- I. Colorants
- II. Fibres textiles
- III. Mordançage
- IV. Teintures
- V. Réalisations artistiques
- VI. Partenaires
- VII. Remerciements

I. Colorant naturel végétal

Extraction de la curcumine


- Matière végétale : curcumin

- Solvant : eau

- Température : 100°C

- Temps d'extraction : 30 min

I. Colorant naturel végétal

Extraction de la lawsone

- Matière première : henné

- Solvant : eau

- Température : 100°C

- Temps d'extraction : 30 min

I. Colorant naturel végétal

Extraction de la quercétine

- Matière première : pelures d'oignons

- Solvant : eau

- Température : 100°C

- Temps : 30min

I. Colorant naturel végétal

Extraction de l'hématoxyline

- Matière première : bois de campêche

- Solvant : eau

- Température : 100°C

- Temps: 30 min

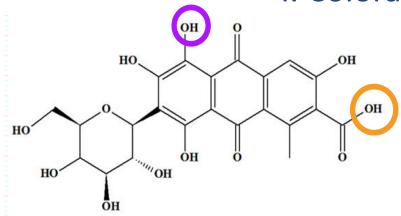
I. Colorant naturel animal

Extraction de l'acide carminique

- Matière première : cochenille

- Solvant : eau

- Température : 100°C

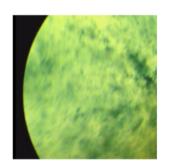

-Temps: 30min

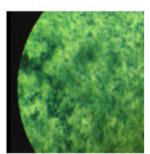
I. Colorant naturel animal

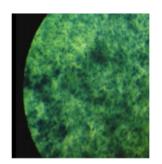


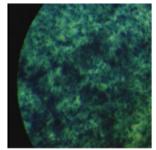
Acide carminique

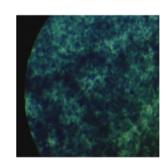
I. Colorant naturel animal


I. Colorant synthétique




Synthèse de **l'indigo**


I. Colorant synthétique


Synthèse de l'indigo

II. Fibre textile naturelle végétale

Glucose (C₆H₁₂O₆)

Cellulose (C₆H₁₀O₅)_n

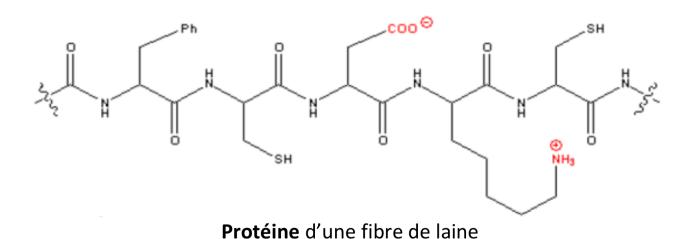
Coton

II. Fibre textile naturelle végétale

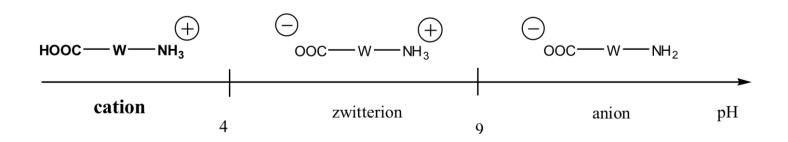
Cellulose (C₆H₁₀O₅)_n

95 %

Lin


Lignine

II. Fibre textile naturelle animale


Fibroine

Soie

II. Fibre textile naturelle animale

Laine

II. Fibres textiles synthétiques

Polymère du Tergal (Polyester)

Nylon 6/4 (Polyamide)

II. Fibres textiles hémi-synthétiques

Viscose

III. Mordançage

Le mordançage consiste à créer un pont chimique entre les colorants et les fibres textiles.

Matières premières :

Alun de potassium $KAI(SO_4)_2$ Al ³⁺

Alun de fer $NH_4Fe(SO_4)_2$ Fe ³⁺

Coton

Solvant : eau

o Température : 50-80°C

Temps: 1 à 2 heures

IV. Teinture à l'indigo

Indicateur coloré d'oxydo-réduction

$$+ 2e^{-} =$$

Ind

Forme oxydée (bleue) Peu soluble dans l'eau à 20°C Ind ²⁻

Forme réduite (jaune)
Très soluble dans l'eau à 20°C

IV. Teinture à l'indigo

Ind 2-

$$S_2O_4^{\ 2^-}$$
 + 4 HO $^-$ + Ind \rightarrow 2 $SO_3^{\ 2^-}$ + Ind $^{2-}$ + 2 H_2O ion dithionite

$$2 \operatorname{Ind}^{2-} + O_2 + 2 H_2O \rightarrow 2 \operatorname{Ind} + 4 HO^{-}$$

IV. Teinture à l'indigo

IV. Teintures



Matières premières :
 Coton ou coton mordancé (Fe(III) ou Al(III))
 Colorants naturels ou synthétiques

Température : 20°C à 100°C

Temps: 1 a 60 minutes

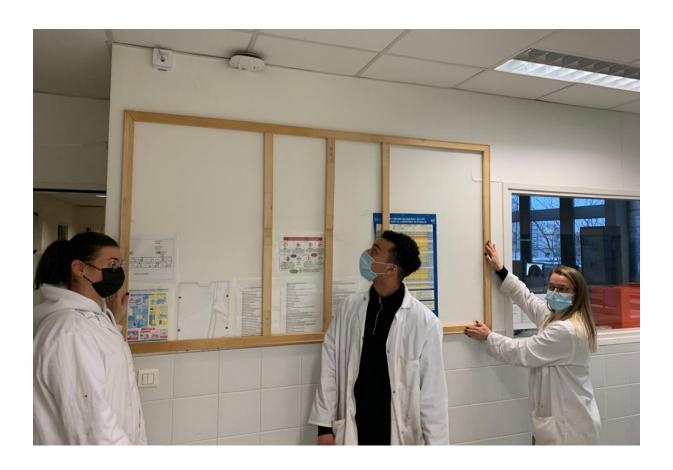
IV. Teinture au curcumin

IV. Teinture à la cochenille

IV. Teinture à l'indigo

IV. Teinture au bois de campêche

IV. Teintures

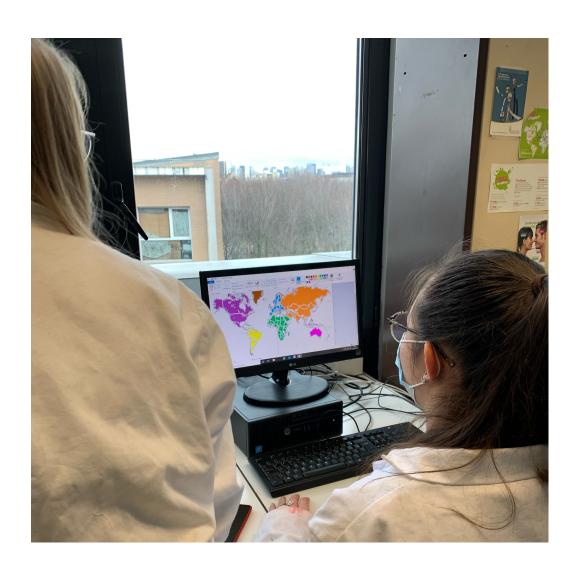

IV. Teintures

IV. Teintures

V. Réalisation artistique

Châssis en bois 220 cm x 100 cm

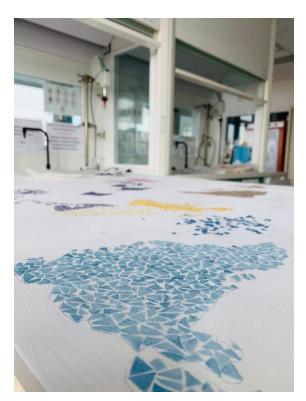
V. Réalisation artistique

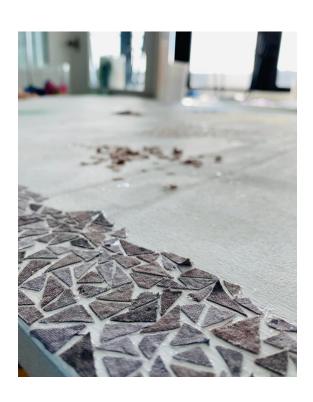

Toile de coton brut agrafée

V. Réalisation artistique


Formulation d'une peinture acrylique à base de dioxyde de titane TiO₂

V. Réalisation artistique


Collage des tissus avec de l'acétate de polyvinyle (Formulation de colles)



V. Réalisation artistique

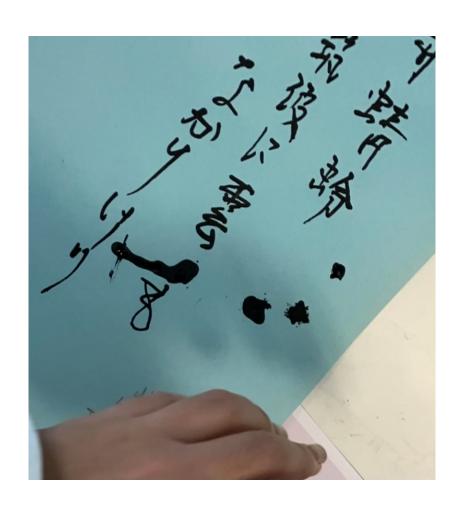
Synthèse du noir de galles

Matière première : galles de chêne + sulfate de fer III + eau

Température : 20°C Temps : 5 secondes

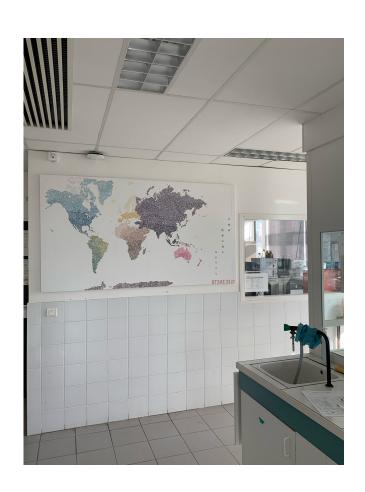
V. Réalisation artistique

なかりける流波に悪も


赤蜻蛉

Haiku japonais

« libellule rouge-sang,


Il n'y a pas de nuages,

Sur le mont Tsukuba »

VI. Partenaires

- Universcience (Palais de la découverte Cité des sciences et de l'industrie)
- Manufacture de sèvres Cité de la céramique
- Manufacture des Gobelins Mobilier national
- Institut du monde arabe
- Musée Albert Kahn
- Musée d'art et d'histoire du judaïsme
- Château de Versailles
- Musée du lycée Hoche
- Fondation de la maison de la chimie
- DAAC de Versailles

VI. Partenaires

- Académie de Versailles
 Lycée « Galilée » Gennevilliers 92
 Collège « Guy Môquet » Gennevilliers REP+ 92
- Académie de Créteil
 École « les cosmonautes « Saint Denis REP+ 93
- Académie de Paris
 École Juive Moderne « EJM » Paris 17ème

VII. Remerciements

Marie-Blanche Mauhourat

Cécile Bruyère

Société Chimique de France SCF