
Synthèse et catalyse à l'aide de carbènes Nhétérobicycliques N-fusionnés à fonctionnalisation latérale

Vincent César

Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS) 205 Route de Narbonne, BP44099, 31077 Toulouse cedex 4.

Dans une continuation logique de nos travaux sur la fonctionnalisation du squelette hétérocyclique des carbènes N-hétérocycliques (NHCs),¹ nous avons initié il y a quelques années un nouvel axe de recherche portant sur la fonctionnalisation latérale des carbènes bicycliques de type imidazo[1,5-a]pyridin-3-ylidene (IPy).² Cette dernière famille de NHCs n'avait été que peu étudiée jusqu'alors. Comme sa géométrie spécifique induit un rapprochement entre le groupe L et le centre métallique, notre idée de départ a été de fonctionnaliser cette position par des groupes coordinants, stériquement encombrants, et/ou chiraux, afin d'introduire des propriétés originales aux NHCs.

Je présenterai ici les résultats obtenus sur le ligand iminophosphorane-IPy bidente A,3 le NHC B portant un hétérocycle latéral de type barbiturique (chiral),4 et le NHC hélicénique C.5 La clé de voute de notre stratégie repose sur le développement d'une réaction de couplage de type SN_Ar entre un nucléophile 5et le sel de bromoimidazo[1,5-a]pyridinium 1, accès aux précurseurs d'imidazopyridinium 2. En outre, le couplage entre ce dernier et les esters d'acétate 2-substitués conduit à un

accès facile et direct au nouveau système mésoionique tricyclique fusionné imidazo[2,1,5-cd]indolizinium-3-olate **D**.6

References:

- 1 M. Ruamps, S. Bastin, L. Rechignat, A. Sournia-Saquet, D. A. Valyaev, J.-M. Mouesca, N. Lugan, V. Maurel, V. Cesar, *Chem. Commun.* **2018**, *54*, 7653 et références citées.
- 2 J. Iglesias-Siguenza, C. Izquierdo, E. Diez, R. Fernandez, J. M. Lassaletta, Dalton Trans. 2016, 45, 10113.
- 3 K. Azouzi, C. Duhayon, I. Benaissa, N. Lugan, Y. Canac, S. Bastin, V. César, Organometallics 2018, 37, 4726.
- 4 (a) Y. Tang, I. Benaissa, M. Huynh, L. Vendier, N. Lugan, S. Bastin, P. Belmont, V. César, V. Michelet, *Angew. Chem. Int. Ed.* **2019**, *58*, 7977; (b) I. Benaissa, K. Gajda, L. Vendier, N. Lugan, A. Kajetanowicz, K. Grela, V. Michelet, V. César, S. Bastin, publication soumise.
- 5 L. Pallova, thèse de doctorat, Université Toulouse III, Paul Sabatier, 2020.
- 6 I. Benaissa, L. Pallova, M.-E. Morantin, T. Lafitte, M. Huynh, C. Barthes, L. Vendier, N. Lugan, S. Bastin, V. César, *Chem. Eur. J.* **2019**, 25, 13030.