Synthèse organique en réacteurs miniaturisés à flux continu: faire mieux avec moins Julien LEGROS Laboratoire bra

Mardis de la Chimie Durable - SCF March 9th 2021

Batch vs. Microflow

Batch vs. Microflow

Jun-ichi Yoshida (1953-2019)

J.-i. Yoshida, H. Kim, A. Nagaki, ChemSusChem 2011, 331

M. B. Plutschack, B. Pieber, K. Gilmore and P. H. Seeberger, Chemical Reviews, 2017, 11796

Batch vs. Microflow

M. B. Plutschack, B. Pieber, K. Gilmore and P. H. Seeberger, Chemical Reviews, 2017, 11796

All-in-one devices

Sigma-Aldrich Microreactor Explorer

Equipment

mass flow controller (MFC)

J. A. M. Lummiss, P. D. Morse, R. L. Beingessner, T. F. Jamison, Chem. Rec. 2017, 667

Continuous flow for process intensification

Laboratory (50 mg - 10 g)

Factory (kgs - tons)

- material
- physical phenomena (stirring, heating)
- hazard (toxicity, explosivity)
- new synthetic path

Flow

amount produced depends on flow rate and time space-time yield = amount of product obtained per hour
for one liter of reactor volume (g/L/h)

M. B. Plutschack, B. Pieber, K. Gilmore and P. H. Seeberger, Chemical Reviews, 2017, 11796

Microflow to overcome competitive consecutive reactions

Jun-ichi Yoshida (1953-2019)

J.-i. Yoshida, H. Kim, A. Nagaki, ChemSusChem 2011, 331

J.-i. Yoshida et al., J. Am. Chem. Soc. 2007, 3046

B. Picard, K. Pérez, T. Lebleu, D. Vuluga, F. Burel, D. C. Harrowven, I. Chataigner, J. Maddaluno, J. Legros J. Flow Chem. 2020, 139

K. Pérez, B. Picard, I. Chataigner, J. Maddaluno, A. Nagaki, J.-I. Yoshida, D. Vuluga, F. Burel, R. Hreinz, L. Falk, J.-M. Commenge, J. Legros, OPR&D 2020, 787

Productivity = 6.7 g/h

45° angle favors mixing of THF and hexane phases

angle

Space-time yield = 81 kg/L/h

Collab J.M. Commenge, L. Falk, R. Hreinz (LRGP-Nancy)

advantages

- ✓ Temperature control (heat transfer)
- ✓ Mixing (mass transfer)
- ✓ Reproducibility
- ✓ Optimization
- ✓ Inherent scalability

IR spectrometer

S. V. Ley, I. R. Baxendale. *Org. Process Res. Dev.* 2010, 393 P. Knochel, S. V. Ley, *Org. Process Res. Dev.* 2012, 1102

NMR spectrometer

- J. Bart, *J. Am. Chem. Soc.* 2009, 5014
- E. Danieli, B. Blümich, V. P. Ananikov, Chem. Rev. 2014, 5641
- P. Giraudeau, F.-X. Felpin, React. Chem. Eng. 2018, 399

but also

✓ « On-board » systems

✓ In-line analysis

advantages

- ✓ Temperature control (heat transfer)
- ✓ Mixing (mass transfer)
- ✓ Reproducibility
- ✓ Optimization
- ✓ Inherent scalability

but also

✓ « On-board » systems

✓ In-line analysis

t^{*R*} = volume/flow rate (Q)

IR spectrometer

S. V. Ley, I. R. Baxendale. *Org. Process Res. Dev.* 2010, 393 P. Knochel, S. V. Ley, *Org. Process Res. Dev.* 2012, 1102

NMR spectrometer

J. Bart, *J. Am. Chem. Soc.* 2009, 5014

E. Danieli, B. Blümich, V. P. Ananikov, Chem. Rev. 2014, 5641

P. Giraudeau, F.-X. Felpin, React. Chem. Eng. 2018, 399

advantages

- ✓ Temperature control (heat transfer)
- ✓ Mixing (mass transfer)
- ✓ Reproducibility
- ✓ Optimization
- ✓ Inherent scalability

but also

✓ « On-board » systems

✓ In-line analysis

IR spectrometer

S. V. Ley, I. R. Baxendale. *Org. Process Res. Dev.* 2010, 393 P. Knochel, S. V. Ley, *Org. Process Res. Dev.* 2012, 1102

NMR spectrometer

- J. Bart, J. Am. Chem. Soc. 2009, 5014
- E. Danieli, B. Blümich, V. P. Ananikov, Chem. Rev. 2014, 5641
- P. Giraudeau, F.-X. Felpin, React. Chem. Eng. 2018, 399

Application to the on-field and sustainable Neutralisation of chemical warfare agents (CWA)

Tetriso R = i-Pr, Y = N(i-Pr)₂

OPCW

B. Picard, I. Chataigner, J. Maddaluno, J. Legros, Org. Biomol. Chem. 2019, 6528

C-VX

P.-Y. Renard, H. Schwebel, P. Vayron, L. Josien, A. Valleix and C. Mioskowski, Chem. - Eur. J., 2002, 2910

R = n-Bu, R' = Et

Neutralisation of « mustard gas » yperite (toxic toxic **100% selectivity** for sulfoxide required [0] +Cl Yperite (HD) HDO HDO₂ innocuous neutralisation by pulverisation of Decon Green Simple ٠ Efficient/scalable • Movable Potential threat of « mustard gas ٠ **Sustainable** • In-line monitoring • moved and destroyed in a secured remote place

B. Picard, I. Chataigner, J. Maddaluno, J. Legros, *Org. Biomol. Chem.* 2019, 6528Y. J. Jang, K. Kim, O. G. Tsay, D. A. Atwood, D. G. Churchill, *Chem. Rev.* 2015, *115*, PR1

Neutralisation of « mustard gas » yperite Θ CĽ Cl toxic toxic 100% selectivity for sulfoxide required 0 0 O [0] +Cl CI Cl Yperite (HD) HDO HDO_2

B. Picard, B. Gouilleux, T. Lebleu, J. Maddaluno, I. Chataigner, M. Penhoat, F.-X. Felpin, P. Giraudeau, J. Legros *Angew. Chem. Int. Ed.* 2017, 7568

B. Picard, B. Gouilleux, T. Lebleu, J. Maddaluno, I. Chataigner, M. Penhoat, F.-X. Felpin, P. Giraudeau, J. Legros Angew. Chem. Int. Ed. 2017, 7568

B. Picard, B. Gouilleux, T. Lebleu, J. Maddaluno, I. Chataigner, M. Penhoat, F.-X. Felpin, P. Giraudeau, J. Legros *Angew. Chem. Int. Ed.* 2017, 7568

B. Picard, B. Gouilleux, T. Lebleu, J. Maddaluno, I. Chataigner, M. Penhoat, F.-X. Felpin, P. Giraudeau, J. Legros Angew. Chem. Int. Ed. 2017, 7568

B. Picard, B. Gouilleux, T. Lebleu, J. Maddaluno, I. Chataigner, M. Penhoat, F.-X. Felpin, P. Giraudeau, J. Legros *Angew. Chem. Int. Ed.* 2017, 7568

A. Delaune, S. Mansour, J. Legros et al., Manuscrit en révision

Other projects related to sustainable chemistry in flow

Flow polymerisation of biobased monomers

With K. Pérez, F. Burel, D. Vuluga (PBS, INSA Rouen)

Thermodynamic and kinetic studies for the flow valorisation of fructose

ANR PRCI « MUST » (PI: S. Leveneur, LSPC, INSA Rouen) PhD student: A. Cordier

Conclusion

- \checkmark fast thermalisation and mass transfer
- \checkmark fine reaction time control
- ✓ scalability

Friendlier reaction conditions and higher selectivity for fast reactions

- ✓ Organolithium chemistry
- $\checkmark~$ Neutralisation of mustard gas and VX simulants

Acknowledgements

France (Channel) England

COBRA - Rouen

Dr. Jacques MADDALUNO

Antonin DELAUNE PhD student (2020-)

Sergui MANSOUR PDRA (2018-) Prof. Isabelle CHATAIGNER

Baptiste PICARD PhD student (2015-2018)

Katia PEREZ PhD student (2019-)

Prof. Pierre-Yves RENARD

Dr. Ludovic JEAN

COBRA - Equipe MESOO

CEISAM - Nantes

Prof. Patrick GIRAUDEAU

Prof. François-Xavier FELPIN

Boris GOUILLEUX PhD student (2012-2015)

LRGP - Nancy

Dr. Laurent FALK

Dr. Rainier HREINZ

Prof. Jean-Marc COMMENGE

Comité de pilotage du GDR

Direction : J. Legros (COBRA-Rouen) Co-direction : M. Penhoat (MSAP-Lille)

Axe 1 Chimie fine

F. Buron (ICOA-Orléans) • C. de Bellefon (CP2M-Lyon)

Axe 2 Synthèse d'objets et systèmes nano-, macro- et supramoléculaires

C. A. Serra (ICS-Strasbourg) • V. Rataj (UCCS-Lille)

Axe 3 Outils et méthodes

F.-X. Felpin (CEISAM-Nantes) • L. Falk (LRGP-Nancy)

synthflux@insa-rouen.fr

https://www.linkedin.com/company/gdr-synth-flux/

http://gdrsynth-flux.cnrs.fr/

Nouvelle édition augmentée à l'automne 2021 sur demande à: maud.buisine@teching.com ou synthflux@insa-rouen.fr

Ecole thématique du CNRS Synth_Flux 2021

Organisateurs: Laëtitia Chausset-Boissarie et Maël Penhoat (MSAP-Lille)

Pré-inscription par courriel à: synthflux2021@gmail.com

Le nombre d'inscriptions est limité à 60 places

De la chimie en ballon à la chimie en flux	Jean-Marc Commenge (LRGP, Nancy)
Chimie en flux et physicochimie	Laëtitia Chausset-Boissarie (MSAP, Lille)
Valorisation de la biomasse	Jean Christophe Monbaliu (CiTOS, Liège)
Chimie en flux et synthèse hétérocyclique	Frédéric Buron (ICOA, Orléans)
Chimie en flux et catalyse	Mathieu Pucheault (ISM, Bordeaux)
Synthèse de polymères en continu	Christophe Serra (ICS, Strasbourg)
Chimie en flux à l'échelle industrielle	Pierre-Georges Echeverria (Minakem)
Synthèse de nanoparticules en flux	Catherine Gomez (CNAM, Paris)
Machine Learning et Intelligence Artificielle	Thomas Galeandro-Diamant (ChemIntelligence)
Synthèse en émulsion, formulation	Véronique Nardello-Rataj (UCCS, Lille)
Chimie en flux en réacteurs plasma	Stéphanie Ognier (IRCP, Paris)
Mélange, hydrodynamique et phénomènes de	Joelle Aubin/Laurent Prat (LGC, Toulouse)
transports	
Travaux Pratiques	Comité d'organisation/Démonstrateurs