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Introduction

Here we present a mathematical method to calculate the pH
values along the titration curve of a weak monoprotic acid
(WMA) with a strong menoprotic base (SMB). or vice-versa.
The ionization constant and initial concentration of the weak
electrolyte, as well as the concentration of the titrant, are
supposed to be known.

To the same purpose, the traditional method, usually employed
in general chemistry courses (and textbooks) at not-advanced
levels, makes use of four different formulae, each of them relying
upon a different simplifying assumption, and relating to a differ-
ent point, or segment, of the curve. This fragmentized approach
may induce the student to consider these various formulae as
pertaining to loosely interrelated subjects, instead of regarding at
them as describing different aspects of a system that is basically
the same.

On the contrary, our method employs an approach that is quite
unitary, and turns out to be more accurate and, in our opinion,
more firmly sound than the traditional method, yet remaining as
intuitive as the latter.

Here are the guidelines along which our method proceeds. First,
we derive the exact equation, describing a titration curve of the
type under examination in its whole extension. This result is
accomplished through straightforward stoichiometric arguments.
already employed for similar cases [1,2], with no reference to
such “sophisticated” concepts as mass or charge balance. Then.,
from this exact equation, which turns out to be cubic in the
variable [H*], two quadratic equations are generated on the
hasis of reasonable simplitying assumptions. The first will de-
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scribe the curve segment from the initial point to just before the
neutrality point, the second, from just beyond this point to the
equivalence point and farther.

It will be shown that the curve obtained in this way is coincident,
at any practical purpose, with the exact one, for any titration that
may be actually carried out as an analytical operation.

The method will be illustrated with reference to a titration of a
WMA, denoted as HX, with NaOH as SMB. The symmetrical
case of a WMB being titrated with a SMA will be left to the
reader, after giving him some simple rules about the way to oper-
ate. Therefore, henceforth, the term “titration curve” will be
employed to mean a titration curve of a WMA with a SMB.
Throughout the whole treatment, it will be assumed that the
effects of the internal ionic strength of a solution on its pH value
are negligible.

Theory

By dissolving in water HX and NaOH, a solution is obtained
where the five species HX, X—. Na*, H;O*, and OH- are
contemporarily present at their equilibrium concentrations (hen-
ceforth. briefly, concentrations) [HX], [X-]. etc. The symbol
[H*] will be used instead of [H;O+], for conciseness’ sake.

The above species have originated from, or disappeared
through :

i) the partial ionization of HX .

HX + H,0&Z——= H,0* + X~ (R")
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ii) the complete dissociative dissolution of NaOH to give Na+*
and OH- ions

iii) the partial reassociation of H;O+ and OH- ions to produce
water :

H,0+ + OH-—— 2 H,0

Let us now designate as c, and ¢, the analytical concentrations of
the acid HX and the base NaOH, respectively, and as A’[ ] and
A”[ ] the concentration variations that a given species undergoes
as a result of reactions R’ and R”, respectively. The following
equalities will apply :

(R”)

[HX] = ¢, — A’[HX] 6
[X7]=0+ A[X"] = A'[X"] @
[H*] = K3 + A’[H*] — A”[H*] &)
[OH"} = ¢, + K2 — A”[OH~] )

where K,, is the auto-ionization constant of water. Obviously,
[Nat] = c,.

From simple stoichiometric considerations about R’ and R”, it
comes out that :

A’[HX] = A’[X"] = A’[H7] ®)
and

A”[H*] = A”[OH-] (6)
Through (5), equalities (1) and (2) can be rewritten as :

[HX] = ¢, ~ A’[H?] Q)
and

[X-] = A’[H*] ®

while, through (6), equalities (3) and (4), explicitated with res-
pect to A”[H*] and A”[OH-], respectively, can yield :

ATH = ¢, + {[H'] - [OH-]} ©
Upon insertion of (9) into (7) and (8), it follows that :

[HX] = (¢, - ¢) — {[H*] - [OH-]} (10)
and

[X-] =, + {[H*] - [OH-]} (11)

which are the exact expressions of the concentrations of HX and
X~ as functions of [H*] and [OH-] (cf. *).

Since [OH-] = K /[H*] (12)

equalities (10) and (11) can be turned into :

* The sum of eqs (10) and (11) yields [HX] + [X~] = c, that represents the
mass balance of the solute HX. In addition, since ¢, = [Na*], eq (11) can
be rearranged as [H*] + [Na*] = [OH-] + [X~] which expresses the elec-
trical neutrality (or charge balance) of the solution phase.
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[HX] = (¢, - c) — {[H*] - (K,/[H])} (13)
and
[X-] = ¢, + {(H+] - (K,/[H4])) (14)

respectively. Upon insertion of (13) and (14) into the equilibrium
law of reaction R’, i.e. :

K, = [H*]X-J/[HX] or [H*]=K,HX]/[X"] (15)
one obtains :

(¢, = &) — {[H+] — K /H+]}
[H*] = K; (16)

¢, + {[H*] - K/[H*])

which is the third-degree equation in the unknown [H*] to be
used for an exact calculation of the H,O+ ion concentration in an
aqueous solution containing both a WMA and a SMB.

When a titration is actually being performed, a solution of
NaOH, at analytical concentration cg, is gradually added to a
volume V9 of the solution of HX, whose analytical concentration
let us now suppose to be known, and equal to c3. Let V be the
volume of titrant which has been added from the beginning of the
titration up to a given point. The analytical concentrations of the
acid and the base in the resulting solution will depend on V,
according to the expressions :

c,=c¢VY(Ve+ V) and ¢, =cgV/(Ve+V,) 17
which are strictly exact only if the volumes of the solutions being
mixed are strictly additive.

Correspondingly, upon insertion of (17) into (16), an expression
relating [H*] to V, will be obtained, whence a traditional ti-
tration curve, i.e., a “pH vs. V, (or @' V,)” curve, can be drawn.

However, in this paper, as “titration curve” we will mean a
“pH vs. 1” curve, where :

r=V,/Ve (18)
which, when inserted into (17), yields :
c,=c/(1+r1) and ¢, =cgr/(1+T1) 19)

The ratio r is dimensionless ; so, unlike V, or c°-V,, it does not
depend on the units employed, and its value, r,, at the
equivalence point is not affected by the “size” of the sample
being titrated. Indeed,

r, = cgleg (20)
while :
(Vp)e = cg'Vo/cg and  (c§Vy), = V2 (21)

By inserting the values of c, and c,, as defined according to (19),
into eq (16), an expression is obtained which is cubic with respect
to [H+], but linear with respect to r, and can be rearranged in the
form

KoK, + (K, + Kieg) [H*] — Ki[H*]* — [H*P
r=
[HHP + (K, + cg) [HP — (K, — Kep) [H*] - KK,

(22



whence the exact pH values along a titration curve will be ob-
tained by numerical inversion [3].

As obvious, a titration curve begins at acidic pH values, and
ends at alkaline ones, passing through a neutrality point where
[H*] = K,2. Upon insertion of this value into eq (22), the cor-
responding r,, value of r at the neutrality point will be found 1o
be :

1, = (cg/cp) [K/(K, + K372)] (23)

= KJ/(K, + Ki?) 24)

(if cg = cf)
Since [H+] is a decreasing function of r, along the titration curve
it will be [H*] > [OH-] for r < r,,, and [H*] < [OH"] for r >r,,,
and as the abscissa of a point of the curve will move farther and
farther away from the neutrality point, the absolute value of the
difference between the concentrations of these two ions will
become larger and larger.

On the basis of this simple observation, a reasonable approx-
imated form, valid for 0 < r < r, (the “acidic portion” of the
curve), of the exact eq (16), can be obtained by rewriting it as :

[H + B - K, = K;{(c, - o) — [HY] + K]} (r<1,) (29)

which turns out to be quadratic in the unknown [H+*] once the
term K,/[H*] i.e., [OH"], has been neglected with respect to
[H*].

As regards the “basic portion” of the curve, let us first rewrite eq
(16) in terms of [OH"] :

¢, — [OH-] + K, J[OH"]

[OH-] = K¢- (26)
(c, — ¢,) — KJ[OH-| + [OH~]

where :

Kf = KK, @7)

is the ionization constant of X—, the conjugated base of HX,
usually designated as the hydrolysis constant of X~. Eq (26)
can be rearranged as :

[OH-P + (¢, - &)[OH] - K, = Ki(e, - [OH] + KABH)) (1> 1) (28)

where K, /J[OH-] has been neglected with respect to [OH"] ;
this approximated equation, valid for r > r,, is perfectly simi-
lar to eq (25), and is quadratic in [OH-].

Therefore, a titration curve may be approximately de-
scribed :

i) for its acidic portion (r < r,), by the formula :

K, +¢,
2

N {Kn +¢\?
[HY]= - AW + K¢, — ¢) + K, + KFATT (29)

which immediately comes out of (25), and :

ii) for its basic portion (r > 1,), through the formula (generated
by eq (28)) :

Kftc,-¢
2

VK;+cn—rh2
+ ( )+Kt-cb+1<w+w1ﬂ’ (30)

[OH]= - =

by calculating the corresponding [H+] = K,/[OH-] values.

Of course, in formulae (29) and (30), the terms c, and c, are
given by eqgs (19) for each value of r.

Since the barred terms in (29) and (30) are positive, the approxi-
mative values of the radicands are lower than the exact ones ; so,
while formula (29) produces [H+*] values approximate by defect,
formula (30), through [OH~] values by defect, yields [H+] values
approximate by excess.

It is to be remarked that, when ¢, = 0 and K,, is much lower than
the other addends under the square root of formula (29), it re-
duces to the familiar expression

[H = - (K/2) + V(K2 + Kie,

which gives [H*] for a solution where a WMA is the only solute ;
similarly, when ¢, = ¢, (i.e., at the equivalence point), and if K
can be neglected with respect to the other terms of radicand of
formula (30), it reduces to the well-known formula to calculate
[OH-] in a solution containing the salt NaX as the only solute, at
an analytical concentration c, = ¢, = ¢, :

GD

[OH-] = — (K#2) + V(K22 + Kic, (32)
All the relations and formulae derived in this section for a titra-
tion of a WMA with a SMB can be extended to the symmetric
case of a WMB being titrated with a SMA, just by interchang-
ing :

i) [H+] with [OH-] ;

ii) K, with K,,, and K with K% ;

iii) ¢, with ¢, and cg with cg ;

iv) Ve with Vg, and V, with V.

Test of the performance of the method

When a titration is being actually performed, the pH indicator
employed to detect the equivalence point has to be chosen such
that its pK is as close as possible to the expected pH at the equi-
valence point. In addition, to obtain a sufficiently accurate value
(say, within 1 % ca.) of the analytical.concentration of the WMA
being titrated, its ionization constant and analytical concentra-
tion have to be such that [4] K;c? > 10-8, when ¢ is given as
mol-L-1. On the other hand, in practise, titrations are better per-
formed if both the acid and the base have analytical concen-
trations around 10! mol-L-1.

Keeping these requirements into account, and considering
that the order of magnitude of the ionization constants of
most WMA'’s ranges between 10-! and 1012, we tested the
performance of our method under the following conditions :
¢g =cf = 10-! mol'L.-1, and K, = 10-1, 102, ..., 10-7. In other
words, we calculated the [H*] values along various titration
curves by means of (29) plus (30), and compared them with the
exact ones, obtained from (22) by employing numerical inversion
together with the “interval bisection” method, which allows to
calculate [H*] (and pH) values in correspondence with pre-
selected, evenly spaced, round values of r.

Under the above-specified conditions, the approximate values of
pH coincide with the exact ones at least up to the fourth decimal
digit, i.e., beyond the limit of practical significance, along the
almost complete extension of the curve. Only in a very tiny inter-
val of r in the proximity of the neutrality point some minor dis-
crepancies, affecting the fourth decimal digit, can be sometimes
observed. This result was not unexpected, since, around the neu-
trality point, the barred terms in (29) and (30) are no more negli-
gible with respect to the other addends under the square roots.
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Upon decreasing c¢ and/or cg, these discrepancies become larger,
but the interval of r values where they can be detected remains
quite narrow **.

Final remarks

In our opinion, the approach here proposed is unitary, simple,
and intuitive ; so, it could be a valid tool in teaching acid-base
equilibria in aqueous solutions and their quantitative aspects, to

** However, should a pH value be calculated very exactly in the immediate
vicinity of the neutrality point, the following two-step method may be used.
Ifr =r,, then [H*] = [OH-] ; so, the barred term in (29) will result larger,
about equal, or smaller than the barred term in (30), according to which one
of the three conditions K, Z K§ will be valid. Correspondingly, formula
(29) will turn out to be more inaccurate, about as accurate, or more accurate
than (30).

A first-approximation [H*] (or [OH-]) value will be calculated by means
of the more accurate formula, chosen on the basis of the above criterion,
and disregarding the condition r 2 r,.

This value will then be reinserted into the right-hand member of the same
formula, where the barred term now has no more to be treated as negligible
with respect to the other addends.

The second-approximation [H*] (or [OH~]) value obtained by this route
yields a pH value always coincident with the exact one, at least within the
first three decimal digits, i.e., at any practical purpose.

be employed, at least, in parallel with the compartmentalized,
sometimes grossly approximate, approach of the traditional
method.

In particular, it should help the student to grasp the concept that
a titration curve is described, along its whole extension, by only
one general equation, and that to build it piecewise is just an arti-
fice to work with equations easier to handle. In comparison with
the four, apparently not interconnected, formulae of the tra-
ditional method (the initial point, the buffering region, the equiv-
alence point, the excess of titrant), the two quadratic formulae
here proposed in place of the exact cubic equation, immediately
show their common origin. As for the accuracy of the results they
yield, it is quite good along the whole extension of the curve,
with the exception, in some cases, of a very narrow interval of r
around the neutrality point. In comparison, the results of the tra-
ditional method may be rather poor along not negligible portions
of the curve.
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