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The computational prediction
of toxicological effects
in regulatory contexts
Current use and future potential of (Q)SAR tools
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a prédiction des propriétés (éco)toxicologiques et physico-chimiques des substances lance de nouveaux
défis à la science. Ces défis concernent notamment le monde de la maîtrise des risques, qu’il s’agisse

des propriétés toxiques des substances ou encore de leurs propriétés explosives. Dans le cadre de notre
dossier relatif au règlement REACH, nous vous proposons ce mois-ci un article dédié aux outils de
modélisation et d’étude des relations (quantitatives) structure/activité (en anglais : Quantitative Structure-
Activity Relationship ou (Q)SAR), reconnues par le règlement européen REACH sur les produits chimiques
comme des outils alternatifs et complémentaires aux outils d’évaluations traditionnels (voir l’encadré p. 54
pour la description des méthodes classiques).

Résumé La modélisation des effets toxicologiques : utilisation actuelle et potentiel futur des outils (Q)SAR
Les effets toxicologiques des molécules peuvent être prédits grâce à la modélisation, quantitative ou
qualitative, de la relation entre structure chimique et activité biologique. Cette approche de modélisation est
connue sous le nom de modélisation (Q)SAR. Depuis le travail pionnier réalisé par Corwin Hansch dans les
années 60, le développement et l�utilisation des relations entre structure et activité ont connu un essor
croissant ces dernières années, soit pour des applications industrielles, soit pour des applications
réglementaires. Cette tendance est de surcroît stimulée par l�implémentation de nouvelles réglementations
européennes (REACH, 7e amendement de la Directive européenne sur les cosmétiques) dont le succès
passe indéniablement par le déploiement d�une stratégie in silico intégrée. Cet article présente de façon
synthétique l�utilisation actuelle et le potentiel futur de ces méthodes pour la prédiction des dangers
toxicologiques des substances pour l�homme.

Mots-clés Toxicologie computationnelle, modélisation, (Q)SAR, in silico.

Abstract Quantitative and qualitative models describing the relationship between chemical structure and biological
activities can be used to predict toxicological effects of chemicals and they are referred to as (Q)SAR models.
Since the pioneering work of Corwin Hansch in the 60�s, the development and utilization of structure-activity
relationships have become increasingly more important over the past years for industrial and regulatory
applications. The implementation of new European chemical safety policies (REACH, 7th amendment of
the EU cosmetic Directive) is one of the incentive of this trend whose success is dependent upon the
implementation of in silico methods among fully integrated strategies. This review briefly summarizes the
current utilization and future potential of such modeling approaches for predicting chemical-induced human
health hazards.

Keywords Computational toxicology, (Q)SAR, in silico.

Introduction and historical background

Xenobiotic agents can disturb a biological system in
several ways including interactions with endogenous
molecular targets (e.g. receptors), oxidative stress,
interference with normal metabolism, interactions with ion
transporters and disruption of calcium homeostasis [1].

It is generally recognized that the molecular structure
of chemicals plays a central role in modulating their
toxicological activity and such a structure-activity paradigm
is of central importance in molecular toxicology. For
instance, by analyzing 232 chemicals and their
corresponding binding data to the estrogen receptor (ER),
Tong et al. have shown that 95% (124/131) of all active
chemicals matched one or more of the following structural
alerts(1): the steroid skeleton, the diethylstilbestrol (DES)

skeleton and the phenolic ring [2] (figure 1). The identification
of such structural motifs is of great toxicological importance
because binding to ER is known as one of the potential
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Figure 1 - Three structural alerts observed in most ligands to estrogen
receptor (ER) according to [2].
Figure adapted from [2].
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mechanisms associated with toxic effects mediated by
endocrine disruptors.

Computational models that can be used to analyze
structure-activity relationships fall under two broad
categories: models based on statistical approaches
(artificial-intelligence based systems) and models based
on generic toxicological rules derived by experts.

The first category of models relies on mathematical
approaches (e.g. multivariate regression, discriminant
analysis) aimed at describing the relationships between a set
of descriptors and toxicological effects. MC4PC, TOPKAT,
LAZAR and MDL QSAR fall into this category of models. The
analysis of the relationship existing between chemical
structure and biological activity can be successfully carried
out if chemical structures are characterized by well defined
parameters such as structural (atom-based) fragments,
physico-chemical, topological, geometrical and quantum
mechanical properties. These parameters are commonly
referred to as molecular descriptors (table I) and their
numerical value can in turn be used to define a statistical
model describing the correlation between chemical structure
and toxicological effects.

On the other hand, the second category of models is
based upon the formalization of toxicological knowledge
in a set of rules aimed at the recognition of molecular

substructures known as structural alerts(1) (also called
toxicophores) which are known for having or modulating
a toxicological effect. Examples of such expert systems
include Derek for Windows, Oncologic and Toxtree. An
example of such an approach is given in figure 2 for Derek
and in figure 3 for Toxtree.

There are also prediction tools that are based on a
combination of these two approaches to yield hybrid expert
systems (such as TIMES [3]) whose rules are based both
on mathematical approaches and expert knowledge.

These basic concepts between structure and
toxicological properties are central to qualitative Structure
Activity Relationships (SARs) and Quantitative Structure
Activity Relationships ((Q)SARs) that, when predicting for
toxicological endpoints, are also referred to as in silico tools.
These tools are complementary to in vivo and in vitro
methods used in toxicology, and their synergistic use is the
basis of a number of Integrated Testing Strategy (ITS) which
are discussed in a later section of this article.

Computational methods for the prediction of toxicity
cover a large variety of toxicological endpoints. Such
methods are extensively described in the literature [4] and
play an important role in helping to understand the potential
mechanism(s) of action of specific classes of chemicals by
providing hypothesis than can be validated by in vitro or in
vivo experiments, and thus are helpful in the development of
safe entities within the industry.

The first formalization of biological activity as a function
of chemical structure is historically attributed to Hansch [5]
and his work aimed at modeling the biological activity of com-
pounds that are structurally similar to phenoxyacetic acid,
which functions as a plant growth regulator. In this seminal
paper, Hansch developed equations which related biological
activity to the hydrophobicity and electronic characteristics
of benzene by means of the following equation:

log(1/C) = k1LogP – k2(LogP)2+ k3σ + k4

where C is the concentration of the compound required to
produce a defined level of biological activity, LogP is the

Table I - Some classes of molecular descriptors used in (Q)SAR
modeling.

Descriptor typology Examples

Physico-chemical 
properties

Molecular weight, LogP, molecular surface 
area, molar volume, molar refractivity

Topological
Arrangements of atoms, branching
and cyclicity

Molecular fields
Computation of the steric and electric 
potentials surrounding a molecule

Geometrical Molecular eccentricity, asphericity

Quantum mechanical
Net atomic charges, orbital energies, 
molecular polarizability

  
 

   

 
 

    

 
 

 
 
 

  
 

  
 

 

Figure 2 - Example of a Structure Activity Relationships (SAR) obtained by means of the expert system Derek for Windows (DfW) version
11.0.0 where the 327 quinone alert has been identified.
The genotoxicity of quinones is associated with their ability to undergo enzymatic and non-enzymatic redox cycling with their corresponding semiquinone
radical. As a result they generate superoxide anion radicals that can be converted to powerfully oxidising hydroxyl radicals that can cause oxidative damage
to DNA (source: report from DfW 11.0.0).
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Les méthodes classiques d’évaluation
des dangers toxicologiques d’une substance chimique

Les études toxicologiques sont la base de toute évaluation des dangers d’une substance chimique. Elles doivent permettre
d’identifier les effets résultant d’une exposition, leurs caractéristiques histologiques et d’établir, le cas échéant, des relations
dose-réponse. L’évaluation des dangers est la première étape de l’évaluation des risques sanitaires, dont l’objectif est
d’assurer l’utilisation d’une substance la plus sûre possible, à la fois pour le travailleur et le grand public.
Depuis 1981, des principes ont été proposés par l’Organisation de Coopération et de Développement Économiques (OCDE)
pour que les études réalisées soient reproductibles, comparables et de meilleure qualité, à l’échelle internationale, et ce dans
le contexte de l’AMD (Acceptation Mutuelle des Données). Ses principes sont, d’une part, les bonnes pratiques de
laboratoire (BPL) et, d’autre part, l’établissement de lignes directrices pour la réalisation d’essais sur les substances
chimiques. Des protocoles expérimentaux standardisés ont ainsi été développés pour caractériser au mieux toutes les
propriétés d’une substance, notamment ses effets sur la santé. Plusieurs organismes proposent donc désormais des
protocoles standardisés tels que l’US EPA(1) (lignes directrices OPPTS(2)), l’ICH(3) ou l’OCDE. Pour sa part, l’Union
européenne adopte les lignes directrices établies par l’OCDE.
D’une manière générale, les lignes directrices sont élaborées pour toutes les durées d’exposition possibles (de quelques
heures à la vie entière d’un animal), pour l’ensemble des voies d’exposition (orale, respiratoire et cutanée), et ce en fonction
de l’effet recherché. Elles sont principalement réalisées chez les rongeurs et les lapins, et dans une moindre mesure
chez les singes ou les chiens.

À ce jour, l’OCDE propose 52 lignes directrices, dont certaines sont citées à titre d’illustration dans le texte. Elles permettent
d’évaluer :
- La toxicité aiguë concerne les effets néfastes pouvant résulter d’une exposition unique, ou d’expositions multiples
en l’espace de 24 heures à une substance, et permet de déterminer la dose à l’origine d’une mortalité de 50 % (notée DL50
pour les voies orale et cutanée, et CL50 pour la voie respiratoire).

• Essai n° 403 : Toxicité aiguë par inhalation.

- La toxicité à doses répétées correspond aux effets toxiques généraux se produisant consécutivement à une exposition
journalière répétée d’une substance durant une partie (exposition subaiguë ou subchronique) ou la majorité (exposition
chronique) de la durée de vie. Les effets systémiques, liés à l’administration de la substance, sont observés au niveau de
tous les organes et décrits avec la détermination de la dose sans effet observé (« no observed adverse effect level », NOAEL)
ou de la plus faible dose entraînant un effet néfaste pour l’organisme (« lowest observed adverse effect level », LOAEL).

• Essai n° 412 : Toxicité à doses répétées par inhalation : 28/14 jours.

- Les potentiels irritant/corrosif, effets locaux pouvant apparaître au niveau du point de contact de la substance avec la
peau, l’œil ou un épithélium muqueux tel que le tractus respiratoire. Les substances corrosives sont capables de détruire les
tissus vivants avec lesquels elles entrent en contact lors d’une exposition unique. Les substances irritantes sont des
substances non corrosives qui, par contact immédiat avec le tissu concerné, peuvent provoquer une inflammation après
une exposition unique.

• Essai n° 404 : Effet irritant/corrosif aigu sur la peau.

- Les effets sensibilisants pour des substances capables de provoquer une réponse allergique chez des individus
prédisposés. La sensibilisation peut être cutanée ou respiratoire.

• Essai n° 406 : Sensibilisation de la peau.

- Le caractère CMR : effets cancérigènes (induction de tumeurs, augmentation de leur incidence et/ou de leur caractère
malin, ou diminution de la durée de leur apparition), mutagènes (modifications permanentes transmissibles dans la quantité
ou la structure du matériel génétique) et reprotoxiques.

• Essai n° 416 : Étude de toxicité pour la reproduction sur deux générations.
• Essai n° 451 : Études de cancérogenèse.

• Essai n° 471 : Essai de mutation réverse sur des bactéries.

Ce type d’études, dont les résultats forment le corps des dossiers réglementaires, est réalisé actuellement au sein de l’Union
européenne, aussi bien dans le cadre des biocides, des produits phytopharmaceutiques, que dans les dossiers
d’enregistrement requis par le règlement REACH.
Toutefois, pour certains effets critiques particuliers, des méthodes dites « alternatives » sont en cours de validation ou même
déjà adoptées afin de limiter le recours à l’expérimentation animale quand cela s’avère possible. Ainsi, des tests in vitro ont
été développés pour évaluer les potentiels irritant, corrosif, sensibilisant ou mutagène des substances chimiques, à partir
par exemple de modèles cellulaires reconstituant la peau humaine pour les effets cutanés. Des approches prédictives de la
toxicité par modélisation (voir l’article de E. Mombelli) sont également développées (approches in silico).

(1) US EPA : United States Environmental Protection Agency.
(2) OPPTS : Office of Prevention, Pesticides and Toxic Substances.
(3) ICH : International Conference on Harmonisation of technical requirements for the registration of pharmaceuticals for human uses.
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logarithm of the partition coefficient of the substance
between n-octanol and water, σ is the Hammett substituent
parameter and k1-k4 are constants. The Hammett parameter
is a measure of the electron withdrawing or electron donating
ability of a substituent and it has been determined by
analyzing the dissociation of benzoic acids. This parameter
takes into account the effect of ring substituents on
ionization. The hydrophobic component (LogP) models the
ability of the chemicals to pass through cell membranes.
Indeed, Hansch acknowledged that there is an optimal value
for LogP: if it is too high the chemical would remain within
the membrane, if it is too low the chemical would remain in
the aqueous phase without partitioning into the lipids.

The utilization of (Q)SAR models
in scientific research
and regulatory contexts

(Q)SAR models are extensively used in the
pharmaceutical industry in the drug development process
(modern medicinal chemistry) with a two-fold objective. In
the first place, the selection of promising lead molecules with

the desired activity; in the second place, the reduction of
expensive drug failures caused by toxicity issues discovered
lately in the drug development cycle or in clinical trials [4, 6].
The adoption of (Q)SAR methods is also very important
for the replacement, reduction and refinement of the use
of animals, the so-called three Rs [7].

(Q)SARs, together with grouping approaches such as
chemical categories and read-across(2), also play an
important role in the evaluation of the toxicity of chemicals
(and their safe use) in the new European community
regulation REACH (Registration, Evaluation, Authorisation
and Restriction of CHemical substances) where they can be
used to predict toxicological properties [8]. Indeed, it has
been estimated that by applying (Q)SARs and read-across
techniques which are currently available, the needs for
animal tests could be reduced by up to 70% for some
individual endpoints resulting in significant savings in testing
costs and use of animals [9]. Several international initiatives
are promoting the regulatory use of (Q)SAR methods and
more notably the OECD has proposed five principles for their
validation in view of their utilization during the regulatory
assessment of chemical safety (table II) [10]. These principles

Figure 3 - Predictive output of the software Toxtree which is a flexible, user-friendly application for grouping chemicals and for predicting
various types of toxicity based on decision tree approaches.
According to the Cramer decision tree, eugenol is identified as a chemical whose structure does not permit any strong initial presumptions of safety. Toxtree is
a software developed by Nina Jeliazkova (Ideaconsult Ltd) on behalf of the Joint Research Centre (JRC). © European Communities (2005, 2007 & 2008).
Screenshot kindly provided by Andrew Worth from the Computational Toxicology Group of the JRC.

Table II - OECD principles for the validation of (Q)SAR models for their use in regulatory assessment of chemical safety.

Principle Explanation

Defined endpoint
Ideally, (Q)SARs should be developed from homogeneous datasets in which the experimental data have
been generated by a single protocol for a given endpoint.

An unambiguous algorithm
The intent is to ensure transparency in the description of the model algorithm so that others can reproduce
the model and explain how (Q)SAR estimates are derived.

A defined domain
of applicability

(Q)SARs models are inevitably associated with limitations in terms of the types of chemical structures,
physico-chemical properties and mechanisms of action for which the models can generate reliable
predictions.

Appropriate measures
of goodness-of-fit, 
robustness and predictivity

This principle expresses the need to provide two types of information: a) the internal performance of a model
(as represented by goodness-of-fit and robustness), determined by using a training set; and b) the
predictivity of a model, determined by using an appropriate external test set (i.e. not used during the
parametrization of the model).

A mechanistic 
interpretation, if possible

The intent of this principle is to ensure that there is an assessment of the mechanistic associations between
the descriptors used in a model and the toxicological endpoint. A well-substantiated fifth criteria greatly
increases the transparency of the model thanks to an explication of causation in terms of molecular
interactions.
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provide a sound epistemological framework for evaluating
regulatory applicability of structure-activity relationships by
describing well-defined quality criteria.

The cosmetic industry is currently facing a major
challenge with the 7th amendment to the EU cosmetic
Directive. The amended directive drew up a list of long term
objectives that should be met by 2013. The main points
are the following: 
• From 2009: ban on the marketing of cosmetic products
and ingredients tested on animals for the majority of tests
irrespective of availability of a non-animal alternative (among
endpoints concerned: genotoxicity, skin and eye irritation
and mammalian acute toxicity).
• From 2011: regular meetings with the different stakeholders
since some of the challenges of the 7th amendment are of
great complexity.
• From 2013: complete sales ban will be in effect for the
remaining testing areas (including skin sensitization, repro-
ductive toxicity, repeat dose toxicity, and toxicokinetics).

To sustain innovation, the industry needs alternative
methods useful for decision making covering (i) the multiple
endpoints currently measured by in vivo and in vitro assays,
(ii) the diversity of mechanisms of action and confounding
factors, and (iii) the physico-chemical diversity of “real-life”
ingredients. In this context, in silico predictive models of
toxic effects can be used early in the development/selection
process of new chemical entities in order to assist chemists
in the priorization of the most promising entities, or at a later
stage in the regulatory context for hazard/risk assessment
and the constitution of files marketing authorizations.
Predictive in silico models do not play a decision role as such
but are considered in the priorization or decision processes
along with other relevant pieces of information.

It is clear that in the frame of such regulatory constraints,
capacity-building programs and information sharing
strategies in the field of (Q)SAR modeling are needed and are
being developed as shown in figure 4 and table III. In order to

fulfill these needs, the formerly known European Chemicals
Bureau (ECB) was promoting a series of activities including
the assessment of already existing (Q)SAR models, the
development and harmonization of computational tools and
the organization of training courses [11]. The assessment of
(Q)SAR models by the ECB and other parties against the
OECD principles is driven by the need for an increased
and easily accessible information on the scientific quality
of existing models.

These efforts are harmonized with the OECD
commitment to make available a “(Q)SAR application
toolbox”(3) [12] which aims at making toxicological
databases, chemical categories, read-across approaches,
and (Q)SAR models readily accessible and user-friendly.

  

  
  

   
  

   
 

 

   

Table III - Short description of some of the national/international initiatives (consortiums, projects, actions) supporting the development/
use of computational approaches in predictive toxicology.

Program/
Initiative

Description Reference

DSSTox
Distributed Structure-Searchable Toxicity (DSSTox) is a project aimed
at building a public data foundation for structure-activity and predictive 
toxicology capabilities.

www.epa.gov/NCCT/dsstox/

ToxCast
ToxCast™ is focused on bioactivity profiling and the implementation of 
computational models to forecast the potential human toxicity of chemicals.

www.epa.gov/ncct/toxcast/

GIS
The GIS (Groupement d’Intérêt Scientifique) aims at facilitating
the implementation of alternative methods to animal experimentation.

www.afssaps.fr/Partenariats/Groupement-
d-Interet-Scientifique-GIS

OSIRIS
The OSIRIS project aims at developping integrated testing strategies (ITS) 
fit for REACH that enable to significantly increase the use of non-testing 
information including (Q)SARs.

www.osiris.ufz.de/

CAESAR
CAESAR is a project which aimed at building (Q)SAR models for the REACH 
regulation.

www.caesar-project.eu/

OpenTox
The OpenTox project aims at developping a predictive toxicology 
framework, that provides a unified access to toxicological data and
(Q)SAR models.

www.opentox.org/

JRC
The Computational Toxicology Group of the JRC promotes computer-
based methods suitable for the regulatory assessment of chemicals.

http://ecb.jrc.ec.europa.eu/qsar/

NEDO
NEDO aims at accelerating the safety evaluations of chemicals and
at developing a chemical safety prediction system based on (Q)SARs.

www.nedo.go.jp/english/activities/portal/
gaiyou/p00002/p00002.html

OECD (Q)SAR 
Toolbox

The Toolbox is intended to be used for filling data gaps in (eco)toxicity data 
using read-across approaches and (Q)SAR models.

www.oecd.org/document/23/
0,3343,en_2649_34377_33957015_1_1_1_3
7465,00.html

Figure 4 - Examples of national/international initiatives (consortiums,
projects, actions) supporting the development/use of computational
approaches in predictive toxicology.
Map reproduced with the kind authorization of Professor J.P. Bradu (http://
jfbradu.free.fr/cartesvect/index.htm).
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(Q)SAR models are also used by the US Environmental
Protection Agency (EPA) which, for example, adopts (Q)SARs
to estimate the toxicity of chemicals used in industry and dis-
charged into water. The US EPA is coordinating the develop-
ment of a major data sharing effort for improved structure-
activity and predictive toxicology capabilities: the Distributed
Structure-Searchable Toxicity (DSSTox) Database Network
provides a public forum for publishing downloadable, struc-
ture-searchable, standardized chemical structure files asso-
ciated with toxicity data [13]. Such initiatives provide access
to high-quality datasets which can be used for (Q)SAR model
development.

The Danish EPA is also very active in the (Q)SAR field and
has been working for years in the development and use
of computer models for predicting properties of chemical
entities. The Danish (Q)SAR database (now maintained by
the Danish (Q)SAR Group at the National Food Institute)
holds predictions from over 70 models covering a wide
range of endpoints (including many human toxicity-related
endpoints) for about 166,000 organic chemicals [14].

The Center for Drug Evaluation and Research (CDER) at
the US Food and Drug Administration (FDA) is also engaged
in a number of initiatives aiming at developing computational
toxicology [15].

In the course of toxicological assessments, integration
of (Q)SARs with other non-animal methods holds great
promises within the framework of an integrated testing
strategy whose general flow chart is reported in figure 5. The
adoption of (Q)SAR predictions within the first tier of an
Integrated Testing Strategy (ITS) as an alternative to the
bioaccumulation flow-through fish test is proposed by Wolf
et al. [16]. Similarly, but in a broader framework, the ECETOC
Technical Report N° 93 analyzes the utilization of (Q)SAR for
the prediction of toxicological effects and physico-chemical
properties within a targeted risk assessment [17]. In Hewitt et
al. [18] the possibility of predicting the placental membrane
permeability towards chemicals is proposed as the start of
any ITS on reproductive toxicity. A number of EU Framework
Programs (figure 4) also contribute to broadening scientific
knowledge by developing in silico tools and/or combining
them with other pieces of information available such as
in vitro tests (e.g. the CAESAR, OPENTOX and OSIRIS
projects).

(Q)SAR models are widely used for the prediction of toxic
hazards such as skin sensitization [19], mutagenicity and

carcinogenicity [20]. In order to be predictive of the potential
risks associated with chemicals, models have to take into
account exposure scenarios. Absorption, distribution,
metabolism, excretion (ADME), as well as mixture effects
(interactions with other components of a cosmetic
formulation for instance), dose, route of administration and
frequency of use, are all key parameters to consider when
moving from hazard assessment to risk assessment. As
such, the process of biotransformation of xenobiotics plays
a key role in toxic responses. Therefore computer simulators
of tissue metabolism such as those available today (for
instance Meteor and TIMES) are needed in order to have
a comprehensive knowledge of the metabolic fate of
xenobiotics.

(Q)SAR modeling: state-of-the-art

Several criteria have to be considered when developing
(Q)SAR models among which the quality of data in the
training set, the mechanistic rationale for the toxic effect
being modelled, the definition of the applicability domain,
and the toxic effect itself (see table II). All of these criteria
will impact the relevance and predictive performance of
the model. Some toxicological endpoints represent real
challenges to predict, for example reprotoxicity or acute
toxicity, considering the multitude of mechanisms involved.
Some other endpoints are better understood from a
mechanistic point of view – for instance mutagenesis
mediated by covalent binding of chemicals to DNA – and
therefore have been the primary focus of interest for a large
number of models. It is also important to point out that the
great majority of available (Q)SAR models predict toxicity for
single, pure chemicals and that the development of (Q)SAR
approaches for mixture toxicity is still in its infancy.

Availability and quality of training sets

The prediction of toxicological endpoints is often based
on models calibrated over toxicological databases whose
data content is chemically and mechanistically very diverse.
This heterogeneity in dataset composition limits the
possibilities of devising a model on the basis of well-defined
a priori structure-activity hypothesis (e.g. a specific
interaction with a known receptor). This scenario is in
contrast with the area of drug design where chemicals

having only minor structural variations with respect
to a “lead” chemical are synthesized and then
experimentally checked for their biological activity.

Moreover, one must be aware that the
structural pattern of chemicals in use in the world
is constantly changing and this means that the
available training sets for (Q)SAR parameterization
are never up-to-date because they do not include
toxicological information on newly synthesized
structural motifs [21].

From a statistical point of view, toxicological
databases tend also to be populated mainly by
information on toxic chemicals because costly
scientific research is prioritized and targeted
towards substances that are reasonably believed
to be hazardous. This statistical bias is then
propagated throughout semi-empirical models
(such as (Q)SARs) that will therefore tend to over-
predict toxicity. The development of commercial
models that are transparent in terms of data

  
   

  

 
 

 

 
 

   

Figure 5 - Example of general flowchart for decision making in a regulatory context.
In silico predictions can be used at an early stage and their contribution assessed in a weight
of evidence approach. Adapted from Grindon et al., ATLA 34, 2006, p. 407-427.
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sources is usually based upon the same training sets
containing data from the public domain. In the course of the
development of in silico models, an ideal situation is often
reached when both toxicologists (or biologists) who know
very well the data and the model developer can closely
interact, thus preventing a misuse or misinterpretation of
the data.

Applicability domain of models

Predictive models can provide a valuable support for
the screening and categorization of chemicals in addition
to further understanding of mechanistic rationale. However
applicability domains often have to be adapted to the needs
of the end-user. Indeed it has been observed that models
performing well for a given class of chemicals (e.g. drugs,
industry chemicals, food additives) do not necessarily
perform well for other classes since chemical spaces of
interest often differ from the one covered in the models
training sets [22].

Local versus global models

Global (Q)SARs for non-congeneric sets of chemicals
generally provide a first level of information. Such models are
based on large and diverse chemical libraries and thus have
a large scope of application, but lower prediction accuracy is
to be expected [7]. Local (Q)SARs dedicated to congeneric
chemicals – e.g. aldehydes as ingredients of fragrances –
provide additional valuable knowledge to better understand
potential mechanisms of action. As such, local (Q)SARs are
often developed to answer a question specific of a chemical
class of interest. Experimental data generated according to
a given protocol for a given endpoint can be used to refine
existing global models and to build local models if necessary.

A number of global (Q)SAR models are commercially
available. Building an in silico strategy based on more than
one such model is interesting in view of the differences in
the models (SAR versus (Q)SAR, expert-knowledge based
systems versus artificial intelligence-based systems) and
applicability domains (chemical space and toxicological
endpoint coverage). The predictive performance of
commercial models has to be assessed on a regular basis,
given the chemical diversity and reactivity of new chemical
entities, and regular updates in the software versions.

Predictive performances of models

As a general remark, it should be noted that data used to
calibrate structure-activity relationships are characterized by
an unavoidable experimental uncertainty and the resulting
(Q)SAR model cannot be expected to produce results that
are more precise than the degree of accuracy with which
toxicological effects can be experimentally described. The
use of external test sets is critical to studies aiming at the
evaluation of model performances but is only possible when
enough good quality data is available.

From a toxicological viewpoint, it can also be added
that the predictive performance of (Q)SAR models can be
enhanced if they are based on the modeling of a well-
understood mechanism. Simon-Hettich et al. [23] highlighted
the epistemological advantages of dissecting complex
toxicological phenomena into several more mechanistically
understood endpoints. Given the complexity and diversity of
mechanisms involved in toxic responses, in silico predictions

should therefore be critically evaluated in a context-
dependent environment, on a case-by-case basis, along
with human expertise.

Perspectives for (Q)SAR modeling

The increasing availability of data mining tools and
curated structure-toxicity databases combined to regulatory
requirements for the generation of reliable toxicological
information are favorable to the future development of
effective (Q)SAR models.

In this context, the US EPA has begun a new research
effort, the ToxCast™ Program for Prioritizing Toxicity Testing
of Environmental Chemicals, to develop the ability to forecast
toxicity based on bioactivity profiling (using both high-
throughput screening and toxicogenomic technologies).
Within ToxCast™, data will be generated on an environmental
chemical library using numerous types of assays evaluating
a broad spectrum of bioactivities. These data will be
relationally linked within the ToxCast™ database to chemical
structures, physico-chemical, toxicological, and computer-
simulated information, and a strategy including structure-
activity relationships is under development to predict toxicity
profiles based on the entire dataset. ToxCast™ data and
predictions will then be applied to the process of prioritizing
environmental chemicals.

Moreover, the impact of the worldwide efforts in
toxicogenomics research will also help in providing insight
into many aspects of unknown toxicological mechanisms.
The unraveling of this “omics” information will in turn prompt
the generation of mechanistic-driven (Q)SAR modeling.

From a physico-chemical point of view, the ordinary
desktop computers can now easily compute quantum
descriptors and in the near future, thanks to the on-going
evolution of microprocessors, it will be possible to compute
these descriptors for even larger molecules. This progress
will allow routine analysis of the intermolecular forces that
determine the biological activity of macromolecules.

The integration of Physiologically Based Toxicokinetic/
Toxicodynamic(4) (PBPK/PD) and (Q)SAR modeling also
represents an interesting and promising field of research.
In this integrated scheme, (Q)SAR models provide interpola-
tion for toxicological responses and pharmacokinetic para-
meters. Indeed, this synergy between the two modeling
approaches can greatly reduce the need for animal testing
while optimizing in cost-efficient ways toxicological
resources.

We should see in the coming years the development of
more and more useful and efficient in silico models to predict
human health hazards although there is still some way to
go. Some key milestones include the full coverage of
toxicological endpoints (one major current limit being the
shared access to high-quality databases) and the coverage
of many diverse chemical entities (including natural extracts,
polymers, silicones, etc). These milestones as well as the
successful implementation of (Q)SAR models within
integrated testing strategies are dependent upon an R&D
commitment between partners from industry, academy
and regulatory.
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Notes and references

(1) Structural alert, also called toxicophores: molecular substructures which
are known for having or modulating a toxicological effect. An example is
given in figure 2.

(2) Read-across: methodology based on the principle of toxicological
analogy among chemicals whose physico-chemical, toxicological and
ecotoxicological properties are likely to be similar or follow a regular
pattern as a result of structural similarity.

(3) A guidance document has recently been issued: www.oecd.org/
document/23/0,3343,en_2649_34377_33957015_1_1_1_37465,00.html

(4) Computational models that describe the processes of uptake, distribution,
metabolism, and excretion of a xenobiotic in order to study its effects in
the body over time.
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