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The challenge of molecular 
structure representation 
for property prediction
Johann Gasteiger

Résumé Un défi de l�informatique chimique : la représentation des structures moléculaires pour la prédiction
des propriétés 
Les méthodes de recherche des bases de données et des similarités structurales entre molécules sont
insuffisantes pour modéliser les caractéristiques de composés chimiques comme l�activité biologique. De
plus, elle ne prend pas en compte la nature 3D des molécules. La représentation 3D des molécules est
réalisée à partir de générateurs automatiques, qui intègrent des règles et principes d�élaboration des
composés organiques. On peut ainsi décrire des propriétés physico-chimiques de la molécule à partir de sa
représentation 3D. Une nouvelle étape est franchie avec la détermination des surfaces de potentiel par la
méthode d�autocorrélation du potentiel électrostatique moléculaire (MEP), qui permet de distinguer les
sites récepteurs d�interaction entre molécules biologiques. L�élaboration d�un code de chiralité permet de
prévoir l�énantiomère le plus favorable dans une réaction catalytique énantiosélective. Enfin, la flexibilité
moléculaire, liée à la recherche des conformations bioactives, étape ultime dans la connaissance des
molécules biologiques, a fait l�objet de nombreuses recherches, mais reste encore un sujet d�étude très
ouvert.

Mots-clés Empreinte digitale, sous-structure, topologie, structure 3D, fonction de distribution radiale,
potentiel électrostatique moléculaire, code de chiralité, flexibilité moléculaire.

Abstract Many methods used for searching in stucture databases and for defining structural similarities between
molecules are insufficient for modeling properties of chemical compounds such as their biologic activity.
Furthermore this does not take into account the three dimensional nature of molecules. A 3D representation
of molecules can be achieved via automatic generators, which incorporate data and rules on the
construction principles of organic compounds. One can thus describe molecular physico-chemical
properties, starting with its 3D representation. A new stage is reached with the representation of properties
on the surfaces of molecules through the autocorrelation of molecular electrostatic potential (MEP),
which has been used to distinguish different biological receptor binding sites. The elaboration of a chirality
code, can now be used to predict the most favorable enantiomer in an enantioselective catalytic reaction.
Finally, molecular flexibility, linked to the search for bioactive (biologically active) conformations, which is the
ultimate phase in the knowledge of biological molecules, has given rise to various scientific developments,
but remains a subject calling for further research.

Keywords Fingerprints, substructure, topology, 3D structure, radial distribution function (RDF), molecular
electrostatic potential (MEP), chirality code, molecular flexibility.

key challenge in drug design and indeed in other fields
of chemistry is the understanding and modelling of the

relationships between the structure of a molecule and its
physical, chemical or biological properties. Many of these
properties cannot be directly derived by purely theoretical
calculations from the molecular structure. An indirect
approach is necessary to find a relationship between the two:
the structure of a molecule first has to be represented by
structure descriptors, which are in turn used to model the
property of interest. This second step is achieved by the appli-
cation of inductive learning methods such as statistical or
pattern recognition methods or artificial neural networks to
establish a relationship between the structure descriptors and
the biological activity.

In this article, we will concentrate on the representation of
molecules. Starting in the 60s, Jacques-Émile Dubois pionee-
red and revolutionized the field by developing the DARC
system, based on a representation of molecules into concen-

tric layers around a focus corresponding to the principal
function [1-2]. At times, when other groups were using line
notations and fragment codes, Prof. Dubois emphasized that
in structure representation all atoms and bonds of a molecule
have to be explicitly considered. From the very beginning of
my work more than 30 years ago, I have followed his visionary
concept. Over time, a variety of methods has been developed
to derive structure descriptors for a molecule [3-5].

Fingerprints of molecular structures

One approach has been to search molecules for the pre-
sence or absence of certain predefined functional groups and
other substructures and compress this information into a bit
string of given length. Such a representation is called a fin-
gerprint of a molecular structure [6-7]. Initially, fingerprints
were developed to enable a quick scan of structure databases
to determine the presence or absence of certain chemical
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structures. The same purpose is achieved by hashcodes [8],
which are constructed very much like fingerprints.

With the advent of combinatorial chemistry and the ensu-
ing need to represent large sets of compounds, fingerprints
became a way of representing chemical structures to model
their biological activity. They are, however, inadequate in their
representation of molecular details. 

Fragment codes and substructures

Whereas fingerprints compress the presence or absence
of certain substructures or fragments into a concise repre-
sentation that no longer allows the identification of individual
fragments, fragment codes explicitly retain the information
about the presence or absence of a certain substructure. A
predetermined set of fragments is used and each fragment
corresponds to a certain position of a bit string having a length
equal to the number of fragments in the predefined set. Frag-
ment codes have been used to model a variety of properties,
like predicting biological activities or simulating infrared spectra.

Fragment codes are also often used to define the similarity
of structures by calculating the Tanimoto index I, from the
number nA of substructures present in structure A, but not
contained in B, the number nB of substructures present in
structure B but absent in A, and the number nC of substruc-
tures in common between structure A and structure B as
expressed:

(1)

On the other hand, fragment codes and lists of fragments
only report the presence or absence of certain fragments and
provide no information on the arrangement of these fragments
in a given molecule. The two structures shown in figure 1a,
for instance, have a high similarity based on the Tanimoto
index, although, clearly, for many types of problems, such as
questions on how to synthesize them, the two molecules are
topologically quite different.

Another major issue is that while fragment codes are
powerful in telling us whether a certain substructure is present
in a molecule, they remain mute as to the distance between
two substructures (figure 1b), a vital piece of information
when modelling the biological activity of a compound, since
the distance between two atoms will be a critical factor when
it comes to determining whether a ligand can bind to one or
two sites of the receptor.

Topological distances 
and atomic properties 

Let us therefore, in our structure representation, consider
the distance between the atoms of a molecule. In the simplest

case, we can use the topological distance, which corres-
ponds to the number of bonds between two atoms. One must
consider not only the distances between two atoms, but also
the identity of these atoms, in particular their physicochemical
properties, such as partial charges or hydrogen bonding
potentials.

One approach to simultaneously considering atomic
properties and distances between atoms is topological auto-
correlation as expressed in eq. 2 [9-10]:

(2)

In this equation, ai and aj are properties of atoms i and j,
respectively, and dij is the topological distance between
atoms i and j. δ is the delta-function with a value of 1 when the
running variable, the distance d, is equal to the distance dij
between the two atoms, and a value of zero when this is not
the case. The summation is made over all combinations
of atoms i and j. 

As atomic properties, ai, any property of an atom, such as
atomic number or its mass, can be used. To represent the
electronic properties of atoms, we have however developed
methods to compute such important physicochemical effects
as partial charges [11-12], inductive [13], resonance [12] or
polarizability effects [14]. These methods are based on simple
and rapid algorithms that allow the processing of large sets
of molecules comprising hundreds of thousands or even
millions of structures. 

The benefits of topological autocorrelation of electronic
properties of atoms have been shown in studies distin-
guishing molecules with different biological activities [10], in
order to find new lead structures, for lead hopping, and for
comparing libraries of compounds. This kind of structure
representation by topological autocorrelation is able, as for
instance in figure 2a, to perceive the similarity of two structu-
res, both being dopamine agonists in this case [10]. For all its
success, topological autocorrelation still only considers the
constitution of a molecule, its set of atoms and how they
are bonded (figure 2b).

3D structure representation

Molecules are, however, three-dimensional objects and
any in-depth representation of a molecule should take into
account its 3D structure and metric. The first step is to gather
3D information on the molecular structure. To date, the 3D
structure of about 250 000 organic and organometallic
molecules has been determined by X-ray diffraction or NMR
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Figure 1 – a) Two structures with a high Tanimoto similarity index; the
one on the left is biphenyl-4-carboxylic-acid-2-chloro-ethylester. b) The
fragmentation of chemical structures.  

(a)
(b)

Figure 2 – a) Two dopamine agonists having different number of
atoms: 28 atoms for structure on the left and 50 atoms for
structure on the right. b) The topology of molecules as expressed
by the relative arrangement of the atoms in a molecule; the
compound is biphenyl-4-carboxylic-acid-2-chloro-ethylester.

(a) (b)
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studies and has been stored in the Cambridge Structure Data-
base (CSD). Although this number may seem large, it is in fact
almost negligible when one considers that the number of
known compounds exceeds 30 million. The question beco-
mes: can we draw enough rules from the known 3D structure
of organic compounds to enable us to predict the 3D structure
of the remaining 99% of organic compounds? The answer is
yes. Several automatic 3D structure generators capable of
generating a 3D molecular model from information on the
constitution of a single molecule have been developed [15].
Our own group has developed the CORINA 3D structure
generator [16]. CORINA incorporates data and rules on the
construction principles of organic compounds, which in turn
allow the generation of a 3D model for basically any organic
molecule [15, 17]. Thanks to this, the publicly available data-
base of the National Cancer Institute, containing 250 251
structures, could automatically be converted into 3D molecu-
lar models in a single run requiring 1.1h on a PC (1.6 GHz,
Linux) and providing 3D models for 99.4% (248 795) of its
structures. CORINA produces a single low energy conforma-
tion of a molecule. Comparison with experimental 3D
structures from X-ray structure determination has shown
the high quality of the 3D structures [18].

With automatic 3D structure generators able to produce
3D molecular models for basically any organic molecule the
question becomes: how can the 3D structures be represented
for data analysis methods requiring the same number of des-
criptors, irrespective of the size and number of atoms in a
molecule? Clearly, the Cartesian coordinates cannot be used,
as the number of descriptors would be directly related to the
number N of atoms in a molecule requiring 3N coordinates.
A fixed-length representation of the 3D structure can again be
obtained by autocorrelation in an analogous manner to that
shown by eq. 2 with the distance dij being binned into ranges. 

As an alternative, radial distribution functions (RDF) origi-
nating in powder X-ray diffraction or electron diffraction
studies for the representation of the 3D structure of molecules
can be used as shown in eq. 3 [19]:

(3)

In eq. 3, the radial distribution function g(r) is obtained
from the product of the properties ai and aj of atoms i and j
and considering the distances rij between those two atoms.
The parameter b is the so-called temperature factor, fuzzi-
fying the distances. The value of r is a distance and is the
running variable of the function. 

With their ability to encode the entire 3D structure of a
molecule and thus model the vibrations of a whole molecule,
both of individual bonds and of the entire skeleton [19-21],
RDF codes have successfully been used for the simulation of
infrared spectra. Their fairly clear physicochemical interpre-
tation holds out a bright future for them in studies of the impact
of the 3D structure on biological activity. An RDF code, for ins-
tance, has recently been used to analyze the NF-κB binding
affinity of a series of sesquiterpene lactones [22]. Valuable as
3D structure codes are for the representation of molecules in
modelling their biological activity, they still only enable us
to represent the skeleton of molecules (figure 3).

Molecular surface properties

But molecules have both shapes and surfaces and inte-
ract with their environment through their surfaces and the

properties on these surfaces. Here again, we are faced with
the task of representing the properties on the surfaces of a
series of molecules with a fixed-length vector, with the same
number of descriptors, irrespective of the size of the molecule.
Here again, autocorrelation can be used as expressed:

(4)

In this case, properties p of points i and j taken from the
molecular surface with a certain sampling density will be used
and the distance d will be binned between a lower dl and an
upper bound du, .

It has been shown that, through autocorrelation of the
molecular electrostatic potential, a representation is obtained
that can model the binding affinity of a series of 31 steroids
to the corticosteroid binding globuline receptor [23]. Autocor-
relation of the molecular electrostatic potential has been used
to define the similarity and diversity of combinatorial libraries
consisting of amino acids attached to xanthene, cubane,
and adamantane scaffolds [24].

In another attempt to represent molecular surface proper-
ties, two-dimensional maps of molecular surfaces have been
produced by a non-linear mapping procedure utilizing a self-
organizing neural network [25]. In this approach, the Cartesian
coordinates of points sampled from a molecular surface are
used to train a self-organizing (Kohonen) neural network. The
mapping of the surface points into the neurons of the network
can be visualized by any property these points had on the
surface, e.g. the molecular electrostatic potential (MEP).
Figure 4a shows the MEP on the surface of a molecule. As this
is a linear projection, only part of the surface can be shown.
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Figure 3 - A molecular 3D skeleton of the previous molecule.

Figure 4 - Representation of the molecular electrostatic potential
(MEP) of biphenyl-4-carboxylic-acid-2-chloro-ethylester (blue:
positive potentials; red: negative potentials). (a) MEP on the
surface of the molecule; (b) 2D self-organizing map of the entire
molecular electrostatic potential into a single plane.

(a) (b)
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Figure 4b, on the other hand, shows the self-organizing map
of the entire MEP, as this method is a non-linear projection
method able to map the entire molecular surface into a single
plane. It has been shown that such maps of the MEP can be
used to distinguish compounds that bind to the muscarinic
receptor from those that bind to the nicotinic receptor [26].

Chirality codes

All proteins are chiral and therefore many receptors and
enzymes respond differently to enantiomers [27]. Correspon-
dingly, about 70% of all drugs are chiral. There is a strong
tendency in the pharmaceutical industry to bring pure enan-
tiomers to the market. Any more detailed modelling of the
effects of structure on biological activity therefore has to
represent chirality. In distance space, enantiomers cannot be
distinguished. Thus, enantiomers will obtain the same 3D
autocorrelation vectors or RDF codes. We have however
developed both a conformation-dependent and a conforma-
tion-independent chirality code that is based on the 3D
structure of a molecule and considers all the atoms of the
ligands around a chiral center or chiral axis [28-29].

Such chirality codes have been shown to successfully
predict the major enantiomer in an enantioselective reaction
caused by a chiral catalyst [28]. Furthermore, chirality codes
were used to predict the first eluted enantiomer in enantiose-
lective chromatography [29]. The path is thus clear for using
chirality codes in modelling the biological activity of different
enantiomers. 

Molecular flexibility and the generation 
of bio-active conformations

All structure representations mentioned so far have
assumed rigid molecules, whereas most molecules are quite
flexible, having single bonds that allow rotation yielding
different torsional angles, and thus provide different confor-
mations. The quest for the biologically active conformation
therefore becomes key. Lack of knowledge about the biolo-
gically active conformation is also the reason why, in quite a
few situations, topological or 2D descriptors outperform 3D
descriptors in modelling biological activity. Clearly, molecules
are three-dimensional and thus 3D descriptors should per-
form better than their 2D counterparts. However, as soon as
the 3D structure of a molecule is considered, the problem of
finding the right conformation becomes imminent. 

The generation of conformations is fairly easy. Even the
generation of low energy conformations is not that difficult.
However, because of the large number of potential settings
for torsional angles, one might soon find oneself with too
many conformations to be handled. The challenge then beco-
mes how to avoid generating too many conformations while
still maintaining the biologically active conformation.
Two approaches are conceivable: a constrained gene-
ration of conformations, in order to generate fewer
conformations, or a direct search for the biologically
active conformation. Attempts along both lines will be
presented. 

An analysis of the distribution of torsional angles
around single bonds in X-ray structures showed clear
preferences and provided a statistical distribution of
the incidences of torsional angles [30]. Such distribu-
tions are taken by the program ROTATE to
preferentially generate those conformations that have
a high incidence in the Cambridge Crystallographic

Structure Database (CSD). In addition, conformations with
small deviations in torsional angles are collected into families
and each family is represented by a single conformation. This
allows the generation of a limited, but quite diverse set of
conformations [31-32]. These sets of conformations also
contain a conformation that is quite close to the receptor-
bound, biologically active conformation.

The attempt to get direct access to the bioactive confor-
mation rests on the idea that a set of ligands binding to the
same receptor must have common spatial features. Thus, a
search for the maximum common three-dimensional
substructure (3D-MCSS) of a set of ligands is initiated by
superimposing the 3D molecular models of these ligands to
maximize the number of atoms of the different ligands that can
be superimposed. In this process, rotations around single
bonds of the ligands are allowed, thus introducing conforma-
tional flexibility. In order to manage this optimization problem,
a genetic algorithm like a stochastic optimizer is used [33].
Figure 5 shows the superimposition of three nicotinic alloste-
rically potentiating ligands emphasizing their 3D structural
similarity.

Summary and conclusions

In this article, we mainly focused on the geometric aspects
of structure representation. The proper consideration of phy-
sicochemical effects exerted by the atoms in a molecule is
however of equal importance [4, 34]. The equations presented
here allow their transparent incorporation into the various
structure coding methods, from the constitution through the
3D structure to molecular surface properties (figure 6). These
methods, combining molecular geometry of increasing
resolutions with physicochemical properties, have been
integrated into the package ADRIANA.Code (Automated
Drug Research by Interactive Application of Non-linear
Algorithm) [35].

Figure 5 - Superimposition by GAMMA of the three nicotinic
allosterically potentiating ligands galanthamine, codeine and
physostigmine, emphasizing their 3D structural similarity.

Figure 6 - A hierarchy of structure representation: a) 2D model; b) 3D model;
c) molecular surface.

(a) (b) (c)
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Although we have mostly focused on drug design issues,
the methods for the representation of molecular structures
can be used in all areas of chemistry. In fact, given the need
to predict a wide range of physical, chemical or biological pro-
perties of compounds, the use of structure coding methods
in many fields of chemistry can only increase. 

Despite advances in the area of molecular structure repre-
sentation, particularly in the 3D arena, since the pioneering
work of Jacques-Émile Dubois in the sixties-eighties, there is
still significant room for progress. The quest for the biologi-
cally active conformation remains a challenge calling for new
ideas and approaches. It is our belief that the development
of new structure representations should rest both on clearly
defined levels of resolution of the geometry of molecules and
on considerations of a variety of physicochemical effects. 
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