Réduire N₂ et CO₂ avec des matériaux à définition moléculaire pour aider la transition énergétique

25 mai 2021

Société Chimique de France **Groupe Chimie durable**

E. Alessandra Quadrelli

Université de Lyon, Ircelyon (UMR 5256) et C2P2 (UMR5265)

IRCELY

https://www.afd.fr

Year

© Arnaud Bouissou MEDDE / SG COP21

2-way Door

Energy consumption (mostly fossil fuel) to fuel energy-intesive (mostly thermic) Chemical industry

Principle GC Energy : +effciency & -Usage

[2] P. T. Anastas, J. C. Warner "Green Chemistry: Theory and Practice"; Oxford University Press: Oxford, U.K., 1998.

Chemistry to make « solar » fuels (that is fuels containing electrons produced form renewable resources)

AQ Green Chem., 2016, 18, 328

Nanostructured substrates for energy conversion and transport

Elongated structures, scale 10 – 100 nm: Balance large interface area and short transport paths Enable for a systematic optimization of energy conversion devices

J. Bachmann, *Beilstein J. Nanotechnol.* **2014**, *5*, 245–248 Q. Liu et al. J. Nanopart. Res. 15:1–7.

...in nanostructured supports....

Heterogenized Molecular Catalysts – modular synthesis –

from molecules

to solids

Metal-Organic Frameworks

- Porous Coordination Polymers
- Organic-inorganic hybrids

- Stable

12

Numerous topologies: Large variety dimensionality & pore size

J. CANIVET

D. FARRUSSENG

N. Elgrishi, M. B. Chambers, X. Wang, C.H. Hendon, A.Walsh, J.Bonnefoy, J. Canivet, E. A. Quadrelli, D. Farrusseng, C. Mellot-Draznieks M. Fontecave,* ChemSusChem, 8, 603 (2015)

The Principle of Microporous Macroligands

MOF-253 / DUT-5

Host structures

UiO-67

- 1D channels
- Pore size: 1.1 nm

- Zr-O
- ✤ 3D pore network
- Pore opening: 0.65 nm

*

Photocatalytic CO₂ reduction

2.2 ml 1 mM Ru(bpy)₃Cl₂ in ACN : TEOA 1 mg catalyst (~ 0,15 μ mol) 200 W Hg lamp, 420 – 800 nm

➢ highest TOF for formate production (24 h⁻¹)

ACS Catal. 2018, 8, 1653-1661

Hammett principle valid for heterogeneous molecular catalyses Common descriptor for homogeneous and heterogeneous catalyses

- ✓ Linearity $\sigma_{\rm m}$ vs. TOF
- Hammett equation is valid for photocatalysis

- ➢ BpyMP-1, BpyMP-2, MOF-253 und UiO-67
 - ✓ Performance is driven by **electronic effects** of the host
 - ✓ No diffusion limitation

Microporous macroligands – Hammett constant vs binding energy –

- $\succ \sigma_{\rm m}$ proportional to **EBE**
- > **TOF** proportional to **EBE**

ACS Catal. 2018, 8, 1653-1661

ChemCatChem **2018**, *10*, 1778-1782.

Heterogeneous photocatalysis – organic dyes as photosensitizer –

- ✓ time independent production rate
- ✓ higher overall production after 24 / 50 h
- ✓ Pyrene and Perylene based photosystems still active after 96 h

Wisser, ANGEW CHEM IEE

Inisight on activity through Excited state photodynamic & DFT

time-correlated single photon counting (TCSPC) and femto-second transient adsorption (TA) spectroscopy : Quentin Perrinet, Vincent de Waele, U. Lille

HOMO LUMO by DFT(B3LYP/6-311++g(d,p) level of theory and at B3LYP/6-311++g(d,p)/LanL2DZ level of theory) Caroline Mellot-Drazniek, Collège de France

Florian M. Wisser, * et al. Angew.Chem.Int. Ed. 2020, 59,5116–5122

The Principle of Microporous Macroligands – conclusion –

From homogeneous to heterogeneous catalysis: Different systems but one rule

The Principle of Microporous Macroligands – conclusion –

Canivet*, Mellot-Drazniek* et al. Chem Science, 2020, 11, 8800-8808

N₂ Cleavage: Different Mechanisms at hand

Henderson et al. Chem. Rev. 2005

Ertl Angew Chem. 2008

Schrock & Yandulov Science 2003

Hou et al. Science 2013

Holland Science, 2011

Chirik et al. Nature 2004

Fryzuk et al. Science, 97 1997

Role of isolated metal in proposed mechanism

X. Solans-Monfort,* C. Chow, E. Gouré, Y. Kaya, M. Taoufik, J.-M. Basset,* E.A.Q* and O. Eisenstein* Inorg. Chem., 7237 (2012)

ACS OMEGA (2019)

RSC ADVANCES (2021)

J. Catal A (2020)

Acknowledgements

	Marcelo FAVARO	with Università Aa Regina Palkovits	chen	U. B Stefa	ologna ania Albonetti	Custair Industri Chemi	able al Stry
Car	Stéphane CADOT	with CEA LET François MARTIN Walid DARWICH	/ wi Juli	th Friedrich Alexande i en BACHMANN Ca Clémence Badie Ya	r Univ. Erlangen ao,Yuanyuan anlin Wu	Erasm	ius+
	Tin TOLOD	With Politecnico di Simelys	Torino Hernandez	Nunzio Russo			TOYOTA
	Tapish SABOO	<i>With Università di l</i> Bhanu Marepally	Messina Linda Perathoner	Claudio Ampelli	Gabriele Centi	IRCELYC	
CHEMISTRY, CATAL	C2P2	Université of Lyon Laurent Veyre (C2P2)	Lyon	1 Florian Wis	sser	C.	69
Clement Camp (C2P2) Chloé Thieuleux (C2P2)		Aimery De Mallmann Mostafa Taoufik		Jérôme Canivet David Farrusseng			

2nd edition of the Winter school "CATalysis ENERgy CHEMistry":

Scientific and Socio-Economic Aspects of the chemistry-energy nexus"

2021 Edition theme : "A Roadmap for Catalysis toward a more renewable-energy driven society"

Connection between the shifting techno-economic panorama of energy-related production systems and catalysis development challenges.

March 13th- 18th 2022 in Aussois (France)

5 days – 5 pivotal molecules in the chemistry-energy-economy nexus : H_2 , N_2 , CH_4 , C_2H_4 and CO_2