Light-induced CO₂ reduction catalysis with urea-modified iron porphyrin

E. Pugliese,¹ A. Quaranta,² P. Gotico,² B. Boitrel,³ W. Leibl², Z. Halime¹, A. Aukauloo^{1,2}

- ¹ Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182 CNRS, Université Paris-Saclay, 91405 – Orsay, France
- ² Institut des Sciences du vivant Frédéric Joliot/ Institut de Biologie Intégrative de la Cellule, UMR 9198, CEA, CNRS, Université Paris-Saclay, 91191 - Gif-Sur-Yvette, France
- ³ Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Rennes F-35000, France

Email: eva.pugliese@universite-paris-saclay.fr

Finding ways to valorize and transform CO_2 into fuel using renewable energies as an alternative to fossil fuels is crucial in the current scientific research. A possible approach is electro or light induced molecular catalysis. Iron porphyrins had been reported to be active catalysts for CO_2 electroreduction since the $80s^{1}$. Our group has previously developed a highly active iron porphyrin catalyst bearing urea groups in the second coordination sphere $(UrFe)^2$. The use of the urea scaffold to stabilize the CO_2 adduct enabled the catalyst to display low overpotentials and high turnover frequency. These results lead us to investigate its catalytic activity in a light induced catalytic system. When using ruthenium tris-bipyridine as a photosensitizer, our study shows that the second coordination sphere effect can also be transposed to homogeneous photocatalysis for CO_2 reduction. Careful tuning of the photocatalytic reaction parameters and modification of second coordination sphere led to a great enhancement of catalyst durability, with one of the highest turnover numbers (TON>7000) reported in the literature, and excellent selectivity for CO (>99%)³.

Figure 1. Simplified scheme of CO_2 -to-CO photocatalytic reduction using $[Ru(bpy)_3]^{2+}$ as photosensitiser and FeUr as catalyst.

- [1] Y. Mu et al., Acta Chimica Sinica, **1986**, 4(2), 133
- [2] P. Gotico et al., Angew. Chem. Int. Ed., 2019, 58, 4504-4509
- [3] E. Pugliese et al., Angew. Chem. Int. Ed., 2022, e202117530