8ème édition des mardis de la chimie durable

le c**nam** gbcm

17 JANVIER 2023

HÉTÉROGÉNÉISATION DE PHOTOCATALYSEURS PROCÉDÉS DE PHOTO-OXYDATION EN FLUX CONTINU

Zacharias Amara

EQUIPE DE CHIMIE MOLECULAIRE

LABORATOIRE DE GENOMIQUE, BIOINFORMATIQUE ET CHIMIE MOLECULAIRE

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

www.gbcm.cnam.fr

www.zachariasamara.com

Photochemistry

To date:

- Over 8000 photochemical reactions reported since 1975
- Huge potential in CO₂ to MeOH conversion

However:

- 5 industrial applications in wastewater treatment
- *4 industrial applications in organic chemistry*

Synthesis of Rose Oxide

Industrial photoreactor operated by Dragoco/Symrise

Synthesis of Artemisinin

Singlet Oxygen Photochemistry

Photocatalysis

Photocatalysis: *Potential Solutions*

Research Projects @ Cnam

Research Projects @ Cnam

Design of Recyclable Photocatalytic Systems

Objective = solve generic problems in photocatalysis

- Low stability of PC
- Low process performances
- No recyclability of homogeneous PC

Immobilization of Cationic Photocatalysts on Silica

Tambosco, Segura, Seyrig, Cabrera, Port, Ferroud, Amara, ACS Catal. 2018, 8, 4383-4389

Application in Synthesis

Sanofi/Amyris 50-60 tons/year (55% yield with TPP TFA @ -10°C)

Tambosco, Segura, Seyrig, Cabrera, Port, Ferroud, Amara, ACS Catal. 2018, 8, 4383-4389

Application in Synthesis

Application in Synthesis

Tambosco, Segura, Seyrig, Cabrera, Port, Ferroud, Amara, ACS Catal. 2018, 8, 4383-4389

Spectroscopic characterizations

 τ_Δ

4 μs

Spectroscopic characterizations

Mecanistic proposal

Mecanistic proposal

Mecanistic proposal

Tambosco, Segura, Seyrig, Cabrera, Port, Ferroud, Amara, ACS Catal. 2018, 8, 4383-4389

Towards New Synergies

Can we introduce new functionalities?

23

Gellé, Price, Voisard, Brodusch, Gauvin, Amara, Moores, ACS App. Mat. Interfaces, 2021, 13, 35606-35616

Gellé, Price, Voisard, Brodusch, Gauvin, Amara, Moores, ACS App. Mat. Interfaces, 2021, 13, 35606-35616

Gellé, Price, Voisard, Brodusch, Gauvin, Amara, Moores, ACS App. Mat. Interfaces, 2021, 13, 35606-35616

Catalyst	Quantity	Yield (% GC-MS)
Ru(bpy) ₃	1,3 g	45
ТМРуР	1,3 g	77

Fixed parameters: Substrate concentration [0,01 M]; Organic flow rate = 0,1 mL·min^{-1;} O₂ flow rate = 0,2 mL·min⁻¹

Catalyst	Quantity	Yield (% GC-MS)
Ru(bpy) ₃	1,3 g	45
ТМРуР	1,3 g	77
Ru(bpy) ₃	2,6 g	78
ТМРуР	2,6 g	100

No Catalyst Deactivation after 12h

Fixed parameters: Substrate concentration [0,01 M]; Organic flow rate = 0,1 mL·min^{-1;} O_2 flow rate = 0,2 mL·min⁻¹

CORNING-

Lancel, Gomez, Port, Amara, Front. Chem. Eng., 2021, 3, 752364 (Collaboration with Corning)

13cm

Lancel, Gomez, Port, Amara, Front. Chem. Eng., 2021, 3, 752364 (Collaboration with Corning)

Batch photochemical process

Flow photochemical process

- Long residence time
- Longer exposition to light
- Higher PC deactivation
- **Performances Mb**_{supported} > **MB**_{homogeneous}

- Short residence time
- Shorter exposure to light
- PC deactivation is no longer a limiting factor
- **Performances MB**_{supported} < **MB**_{homogeneous}

Lancel, Gomez, Port, Amara, Front. Chem. Eng., 2021, 3, 752364 (Collaboration with Corning)

Conclusions

Research Projects @ Cnam

Juglone: an Environmentally Benign Photocatalyst

Research Projects @ Cnam

Sanofi/Amyris Process - 50 tons/year

Start from Cost-Competitive Starting Material

Sanofi/Amyris Process - 50 tons/year

Amorphadiene (120 g.L⁻¹)

Application to a Telescoped Process

Gomez Fernandez, Nascimento de Oliveira, Zanetti, Schwertz, Cossy, Amara, *Org.Lett.* **2021**, *23*, 5593-5598 Zanetti, Chaumont-Olive, Schwertz, Nascimento de Oliveira, Gomez Fernandez, Amara, Cossy, *Org. Process Res. Dev.*, **2020**, *24*, 850–855

Research Projects @ Cnam

Photochemistry

"Allgemeine Photochemie" 1936

Plotnikow predicted that photochemical syntheses on an industrial scale would be limited to a few special cases, i.e. to the production of particularly expensive specialties. He justified this statement by pointing out that light reactions generally require irradiation of large surface areas which would incur very high costs. In Plotnikow's opinion, a tree is an ideal photochemical factory; its leaves present a maximum absorption area for a minimum volume. He urgently warned against any, necessarily imperfect, imitation of Nature.

<image>

Fisher, Industrial Applications of Photochemical Syntheses, Angew. Chem. Int. Ed. 1978, 17, 16-26

Acknowledgements

Cnam Molecular Chemistry Team

- Marc Port & Clotilde Ferroud
- Damien Cabrera
- Catherine Gomez
- Marllon Nascimento
- Mario Andrés Gomez
- Maxime Lancel
- Pierre Zimberlin
- Bryan Tambosco
- Chloé Seyrig
- Kevin Segura
- Nicolas Xerri
- Dylan Curpanen
- Zakariae Asbai

Academic Collaborators

ENS de Lyon

- Cyrille Monnereau
- Elise Dumont

University McGill

- Audrey Moores
- Julio Terra
- Alexandra Gellé

ESPCI Paris

- Janine Cossy
- Geoffrey Schwertz
- Andrea Zanetti
- Pauline Chaumont
- Maria Russo

Industrial Collaborators Pfizer

- Juan Colberg
- Robert Maguire OPRD
- Kai Rossen & Trevor Laird PILI
- Vincent Blanchard
- Guillaume Boissonnat
- Kevin Cottet

Hepatochem

- Marc Bazin

Corning

- Guillaume Gauron
- Marc Winter

Funding agencies:

- ACS Green Chemistry Institute
- Fonds France Canada pour la Recherche
 - Bill & Melinda Gates Foundation
- Agence National de la Recherche (Red2Green, TheoBioDy)

Merci de votre attention

ZACHARIAS.AMARA@LECNAM.NET

www.gbcm.cnam.fr

www.zachariasamara.com

47