

HYDROELEMENTATION OF SF_5 -ALKYNES AND FURTHER FUNCTIONALIZATIONS, A FULLY REGIO- AND STEREOSELECTIVE PATHWAY SUPPORTED BY DFT CALCULATIONS

<u>Lucas Popek,</u>^a Jorge-Juan Cabrera-Trujillo,^b Vincent Debrauwer,^a Nicolas Blanchard,^a Karinne Miqueu,^b* Vincent Bizet^a*

^a Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68100 Mulhouse – France ^b CNRS, Université de Pau et des Pays de l'Adour, IPREM UMR 5254, 64053 Pau cedex 09 – France. vbizet@unistra.fr – Group website: bsm.unistra.fr

Published in : *Angew. Chem. Int. Ed.,* **2023**, *62*, e202300685

94% **12**

WHY SF₅ IS OF INTEREST ?

SF₅ Among the so-called "emerging" fluorinated groups, the pentafluorosulfanyl group (SF₅) is of growing interest in heterocyclic synthesis, materials science, and medicinal chemistry and drug development are in progress.¹ All of the properties showed bellow make SF₅ an interesting alternative to the CF₃ group as a bioisostere, especially in drug development.²

DOWNSTREAM FUNCTIONALIZATION

HYDROELEMENTATION OF SF_5 -ALKYNES (SELECTED EXAMPLES)

COMPUTATIONAL STUDY : DIFFERENCE OF SELECTIVITY SF_5 VS CF_3

8a

SF₅ Hydroamination reaction over CF₃-alkynes has been previously reported,⁴ but a mixture of α - and β regioisomers (A1/B1) was obtained and the presence of a base was essential (conditions Y). In sharp contrast, a total β -regioselectivity was observed with SF₅-alkynes regardless of the conditions (**X** or **Y**). Our DFT study for the hydroamination reaction over CF_3/SF_5 -alkynes (conditions X) confirms that the reaction is kinetically and thermodynamically favored with SF₅-alkynes. β -selectivity can also be rationalized in terms of polarization, activation barriers difference computed for **TS-A1** and **TS-B1** ($\Delta\Delta G^{\dagger}$ = 2.9 kcal) and lower steric repulsion (ΔE_{Pauli}). In addition, the lower activation barriers calculated for SF₅ support that reaction occurs without base assistance thanks to better orbital interaction between the nitrogen lone pair of the imidazole and the empty $\pi^*C\Xi C$.

Unless otherwise stated, $R = p-Ph-C_6H_4^a$ THF was used instead of DMSO with 2 equiv. of nucleohile ^b Both products were obtained from the reaction with the nucleohile ^c KOH was used instead of NaH ^d A 50:50 *E*:*Z* mixture was obtained but only *Z* isomer could be isolated.

AN EASY ACCESS TO ALPHA- SF_5 KETONES

SF₅ Several methods have been reported in the literature for the synthesis of α -SF₅ ketones.³ Herein, we propose an alternative strategy by hydroamination of SF₅-alkynes followed by acidic aqueous hydrolysis.

State of the art:

		C_{β} attack	C_{α} attack
	ΔE_{Pauli}	115.9	124.4

Polarisation of R^f-alkynes

	Alkyne-SF ₅ (2a)	Alkyne-CF ₃ (2a')
qC_{α}	-0.298	-0.149
qC _β	0.090	0.066
Δq	0.39	0.22

PCM(THF)-M06-2X/6-311+G**//M06-2X/def2-SVP

Energetic position of R^f-alkynes

SF₅ On this poster is presented an efficient hydroelementation reaction on SF₅-alkynes. The reaction tolerates N, O and S nucleophiles with a wide range of functional groups. The corresponding adducts are isolated in good to high yields as a single regio- and stereoisomer. A new synthesis of α-SF₅-ketone is proposed in very mild condition. A selection of downstream functionalization was demonstrated, including C-C cross coupling, halogenation, Baeyer–Villiger oxidation and reduction. DFT calculations were performed to better understand the impact on reactivity of the SF₅ compared to the CF₃ group, which nuance the comparison of SF₅ as a super CF₃. The origin of the β-selectivity for the SF₅-alkyne is related to a lower steric repulsion (ΔE_{Pauli}) upon attack at C_B. Nucleophilic attack of imidazole on SF₅-alkyne occurs in the absence of base thanks to better orbital interaction with the LUMO which is more accessible in energy than with CF₃-alkyne.

References:

- 1) a) P.R. Savoie, J. T. Welch Chem. Rev. 2015, 115, 1130; b) P. Das, E. Tokunaga, N. Shibata Tetrahedron Lett. 2017, 58, 4803; c) G. Haufe Tetrahedron 2022, 109, 132656; d) L. Popek, T. M. Nguyen, N. Blanchard, D. Cahard, V. Bizet Tetrahedron 2022, 117-118, 132814,
- 2) a) M. Inoue, Y. Sumii, N. Shibata ACS Omega 2020, 5, 10633; b) M. F. Sowaileh, R. A. Hazlitt, D. A. Colby ChemMedChem 2017, 12, 1481; c) S. Altomonte, M. Zanda J. Fluorine Chem. 2012, 143, 57; d) N. A. Meanwell J. Med. Chem. 2018, 61, 5822; e) J. M. W. Chan J. Mater. Chem. C 2019, 7, 12822.
- 3) a) M. Cloutier, M. Roudias, J.-F. Paquin, Org. Lett. 2019, 21, 3866; b) F.-F. Feng, J.-A. Ma, D. Cahard, J. Org. Chem. 2021, 86, 13808; c) F.-L. Qing, J.-Y. Shou, X.-H. Xu, Angew. Chem. Int. Ed. 2021, 60, 15271.
- 4) B. A. Trofimov, L. V. Andriyankova, L. P. Nikitina, K. V. Belyaeva, A. G. Mal'kina, A. V. Afonin, I. A. Ushakov, V. B. Kobychev, V. Muzalevskiy, V. G. Nenajdenko J. Fluorine Chem. 2016, 188, 157.
- 5) For nucleophilic addition of methanol on SF₅-acetylene, see: F.W. Hoover, D.D. Coffman. J. Org. Chem. **1964**, 29, 3567–3570.
- 6) For similar works developed at the same time, see: a) J. O. Wenzel, F. Jester, D. Rombach ChemRxiv 2022-brg1w; b) H. Kucher, J. O. Wenzel, D. Rombach, ChemRxiv 2022, DOI 10.26434/chemrxiv-2022-01jhn. This content is a preprint and has not been peer-reviewed.