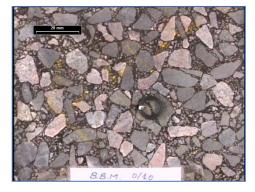
ALTERNATIVE BINDERS TO PETROLEUM BITUMEN FOR ROAD CONSTRUCTION

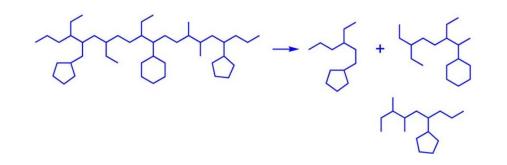
Clémence QUEFFELEC, Bruno BUJOLI, Emmanuel CHAILLEUX

Université Gustave Eiffel

Bitumen

- Bitumen: derived from the distillation of petroleum (oil)
- Road bitumen consumption in France: 2.5 million tons in 2014
 - Roads (90%)
 - Waterproofing


2


Bituminous mix

Why we should undergo researches and developments to replace petroleum bitumen and additives ?

- Oil: a non-renewable fossil fuel influenced by geopolitical and economic issues
- CO₂ emission from oil combustion : future regulation in Europe: new emission standard called Euro 7 is under development
- Petrochemical refining strategies: cracking of petroleum heavy fraction

What Alternative types is needed

Partial replacement

- Extender (25 75%)
- Rheology modifier (< 10%)
 - Fluxant, Rejuvenator
 - Biopolymer
- Surfactant (< 1%)

- \rightarrow Consistency close to bitumen
- ightarrow liquid with solvatation effect
- \rightarrow Elastic solid giving binder structuration
- \rightarrow liquid with physico-chemical effect

<u>Total replacement</u>

- Full replacement with virgin aggreagtes \rightarrow Consistency close to bitumen
- Added binder in recycling technics (with the possibility to design a biobinder according to old bitumen rheological state) → Consistency close to bitumen

Biomass availability to replace petroleum bitumen?

	World production	Mt / year
	Petroleum Bitumen ¹	111
¹ 2019 - International bitumen emulsion federation ² <u>https://www.statista.com/statistics/263933/production-of-</u>		
 vegetable-oils-worldwide-since-2000/) ³https://www.fao.org/3/i9166f/i9166f chapitre4 Oleaginea ux.pdf ⁴ Wan Nur Aifa Wan Azahar et al. / Jurnal Teknologi (Sciences & Engineering) 78: 4 (2016) 111–116) ⁵ https://www.gemme-la-foret.fr/chiffres.html ⁶ Nicolas Scott Bentsen and Claus Felby 2010: Technical potentials of biomass for energy services from current agriculture and forestry in selected countries in Europe, The Americas and Asia. Forest & Landscape Working Papers No. 54-2010, 31 pp. Forest & Landscape Denmark, Frederiksberg 	Vegetal oil ²	200
	Biodiesel from vegetal oil ³	20
	Waste vegetal oil ⁴	10
	Resin (colophane, tall oil) ⁵	1.2
	Agricultural fresh residues ⁶	3300
	Cellulose potential from agricultural residues ⁶	994
	Current cellulose production from forests ⁶	386
	Hemicellulose ⁶	618
	Lignin ⁶	457
	Wood used for energy ⁶	1300

! Figures need to be considered with caution – Consider order of magnitude !

Major actual supply sources

• At industrial scale

6

- For total replacement
 - Pine chemistry (modified rosin)
 - Co-product from paper industry (tall-oil)
- For partial replacement
 - Pine chemistry
 - Pyrolyzed biomass
 - Vegetal oil from refinery process

• Still at development stage

- Thermochemical process able to liquefy biomass
 - Hydrothermal liquefaction of biomass like swine manure, agricultural, urban wastes, wood residues, but also microalgae
 - Pyrolysis
- Lignin as bitumen modifier
- Modified waste cooking oil

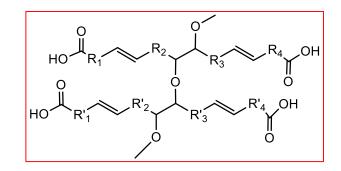
Examples

Binders developed by French road companies

- Vegecol[©], Séquoia[©], Floraphalte[©], Biophalt[©]
 - Concept: vitrified/viscous particles in an oily matrix, structured or not by a polymer

9

Examples


Algoroute project: long-term research

Microalgae residues valorization by solvent extraction

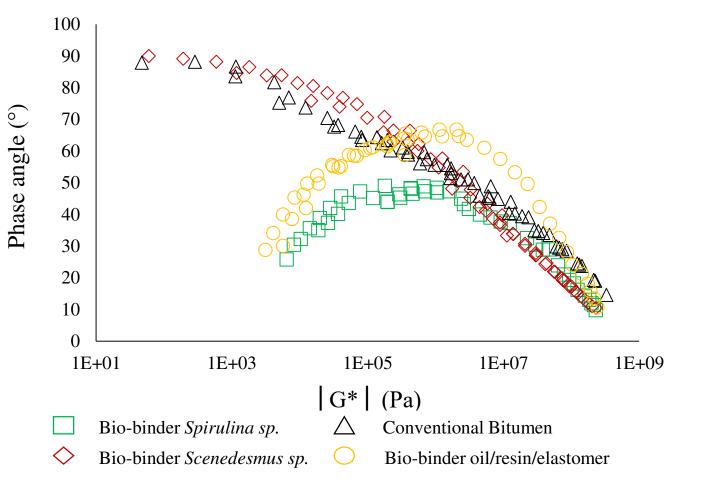
- Oily phase of microalgae is composed of fatty acid soup blended with a high resistant bio-polymer (Algeanan)
 - Yields could be between 10% and 30%

Algoroute project: long-term research

Microalgae residues valorization by hydrothermal liquefaction

- Hydrothermal liquefaction: a process able to liquefy biomass using liquid water at hot temperature (300 °C) and high pressure (100-150 bar)
- Hydrothermal liquefaction of microalgae residues allows to recover 50% of a hydrophic viscous material rheologically similar to bitumen
- Worry about ecotoxicity of hydrothermal products (work in progress on this subject)

Patent FR 13 59293, **2013**; PCT Int. Appl. **2015**, WO 2015044891 (A1); ACS Sust. Chem. Eng. **2015**, 3, 583; Green Chem. **2018**, 16, 1036-1042; J. Cleaner. Prod. **2021**, 322, 129024; J. Environ. Chem. Eng. **2022**, 10, 107361



11

Examples

Algoroute project: long-term research

Bio-binder rheological assessment

Patent FR 13 59293, 2013; PCT Int. Appl. 2015, WO 2015044891 (A1); ACS Sust. Chem. Eng. 2015, 3, 583; Green Chem. 2018, 16, 1036-1042; J. Cleaner. Prod. 2021, 322, 129024; J. Environ. Chem. Eng. 2022, 10, 107361

Examples

Bitume 2.0 project: mid-term research

Use of biomass available in large quantity

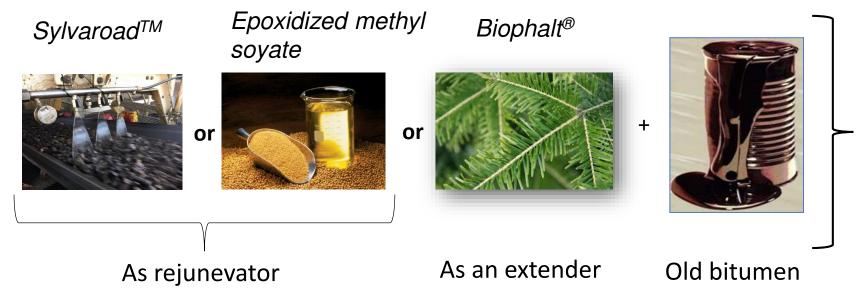
1 - Valorization of biomass coming from agro-industry available in large quantity by hydrothermal liquefaction

Result similar to microalgae / Need to mix different type of biomasses to adjust the final rheology

2 - Valorization of used cooking oil

Chemical modification to increase viscosity: mimic the maltene phase Physical modification to mimic to structuration given by asphaltenes

Lab properties of mix designed with modified used cooking oil are comparable with a BBSG Order 3 (french Spec)



Examples

BioRepavation project: short-term research

Evaluation of 3 alternative bio-materials for the recycling

Materials with biobinders behave better than conventional solution

- Technical assessment
 - Demonstrator: UGE accelerated pavement testing facility
 - Distress mechanism monitoring
 - Innovative non-destructive method

- Environmental assessment
 - Life cycle assessment
 - Fume emission measurements

Conclusion and perspectives

Biomass: the futur for bitumen????

- Long term researches motivated by future petroleum exploitation context
- Mid and short term solution exist

- Some full scale experiments show that it is possible to use biobinder •
- Mixing recycling technic and biobinder could be the solution of the future in our transportation • infrastructure
- We still need to identify new biomasses and new thermochemical processes in order to be able to replace a larger amount of petroleum bitumen
- Using biomass to make bitumen in place of energy valorisation "could be" environmentally beneficial

Acknowledgments

Thanks to all partners:

• COLAS

- ITERG
- IRCELYON
- EIFFAGE Infrastructures
- WESTERN RESEARCH INSTITUTE
- UNIVERSITY OF NOTTINGHAM

