

AFM-IR : When AFM meets IR

Pr. Alexandre Dazzi Institut de Chimie Physique Université Paris-Saclay

AFM-IR technique

Infrared spectroscopy and imaging at nanoscale

Technique principle

AFM-IR setup

AFM-IR setup

Photothermal excitation and photoacoustic detection

Resonance enhanced AFM-IR

Deflection expression when the repetition rate = contact resonance (QCL)

$$Z(t) = \frac{Kk_z D\delta_x}{\rho SL} \left(\frac{\partial g_n}{\partial x}\Big|_{x=L}\right)^2 \frac{\left(\frac{t_p}{2} + \tau_{relax}\right)}{\omega_n} \frac{Q_n}{\pi} \sin(\omega_n t) a_0$$

Amplitude(Z) \propto thermal expansion(a₀) \propto absorbance

J. Mathurin, A. Deniset-Besseau, D. Bazin, E. Dartois, M. Wagner, A. Dazzi, J. Appl. Phys. 131, 010901, 2022.

D. Kurouski, A. Dazzi, R. Zenobi, A. Centrone, Chem. Soc. Rev. 49, 3315-3347, 2020.

J. Mathurin, E. Pancani, A. Deniset-Besseau, K. Kjoller, C.B. Prater, R.Gref, A. Dazzi, Analyst, 143, 5940-5949, (2018).

A. Dazzi, C.B. Prater, *Chem. Rev.*, 117, 7, 5146–5173, (2017)

Resonance enhanced AFM-IR

Bacteriorhodopsin protein Detected inside a purple membrane

Tapping AFM-IR

Tapping AFM-IR configuration

Tapping AFM-IR

Amplitude of the second mode f₂

Tapping AFM-IR signal is proportional to absorbance

Tapping AFM-IR

PS-b-P2VP lamelar polymer

Exemples of Applications

Polymer science

Polymer science

PS-PMMA multilayers film

Polymer science

Overlay (1730/1600)

Cross section

2D chemistry science

Collab. F.Palmino et F.Cherioux institut FEMTO-ST

2D chemistry science

nombre d'ondes (cm⁻¹)

Astrochemistry

Wednesday 28 June 2023

Physical Chemistry 7 ROOM 300

11:15 - 330 | NANOSCALE INFRARED CHARACTERIZATION OF EXTRATERRESTRIAL RYUGU SAMPLES RETURNED BY THE HAYABUSA 2 SPACE MISSION MATHURIN Jérémie - ICP, UPSACLAY, CNRS - FR

Hayabusa2 : December 2014 – December 2020 Ryugu : Cb-type asteroid, contain organic matter, CI-like chemical composition

Astrochemistry

H Yabuta et al. Science (162173), 2023.

Technique evolution

AFM-IR Technology evolution

OPERATING MODES

Jeremie Ma

MUSIICS

MUItiScale Infrared Imaging platform for Complex Systems

- IR users facility.
- Proposal submission each year
- 2 sites (ICP and IPANEMA)
- Financements : Région, Département de l'Essonne, Labex nanoSaclay, ANR, Université Paris-Saclay, PEPR Origines

• Large scale analysis

(en développement)

Image : 10 cm **Résolution** : 100 μm

Microscale and sub-microscale analysis

Image : 1 mm Résolution : 10µm

Image : 200 μm **Résolution** : 500 nm

 $\mu\text{-FTIR Lumos}$

Microscope Mirage

• Nanoscale Analysis

Image : 80 μm Résolution : 10-20 nm

<u>Conclusion</u>

- AFM-IR is the only technique allowing to have a direct measurement of the local absorbance, leading to reliable spectra and comparable to FTIR.
- Tapping AFM-IR is a big improvement that allows to study new kind of organic samples (soft, non adhesive) with a resolution around 10 nm.
- Resonance enhanced and tapping modes allow now to have a huge range of applications (organic or inorganic material).
- New operating mode : Peakforce tapping IR and surface sensitive.

AFM-IR team:

A. Deniset-BesseauJ. MathurinD. BazinM. Petay (PhD)L. Bejach (PhD)

Thanks to

ic/p

