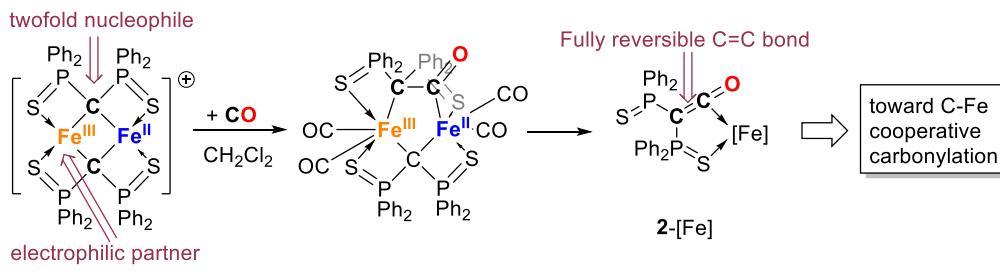


Post-Doctoral Position

Four electrons Carbon-Iron cooperativity for CO₂ activation.


Team : SHEN, (<https://www.lhfa.cnrs.fr/index.php/equipes/shen>)

Supervisor : Dr Marie Boutignon (marie.fustier-boutignon@univ-tlse3.fr)

Duration : 18 months

Funding: Emergence@CNRS Chimie 2026, from March, 30th 2026 to September, 30th 2027, gross salary from 3041 € to 4216 € /month depending on experience.

Context: The ubiquity of iron sulfur clusters in enzymatic systems involving electron transfer reactions has made the study of small sized iron clusters a topic of high interest.^{1,2} Getting inspired by nitrogenases cofactor, which present some activity in the reduction of CO₂ and CO,³ we developed a set of high-spin, poly-iron structures, where iron is surrounded by carbon and sulfur only, using geminal dianions stabilized by thiophosphinoyl moieties as a versatile ligand.⁴ During our study of the reactivity of complex **1** with carbon monoxide (Scheme below), we could show that the ligand can act as a terminal carbene to form a ketene, and that the iron centers do retain this ketene in their coordination sphere.⁵ The ketene proved to be particularly reactive, with instant C=C bond cleavage in the presence of protic molecules.

1

This project aims at the development of appropriate reaction conditions to favor C=C bond cleavage in the coordination sphere of iron, reforming CFe₂ interactions and releasing a carbonylated product in a first stage, in a first step toward C-Fe cooperativity. In a second stage, using CO₂ instead of CO with appropriate reagents will be explored, eluding any redox change at iron in a fully ligand based, 4e-promoted transformation.

Applicant Profile : Applicant should appreciate challenging projects with air-sensitive compounds and using multiple characterization technique (paramagnetic compounds). He/she should have good writing and communication skills in English, be autonomous in her/his work and appreciate to work as part of a team. Experience in the synthesis and characterization of highly air-sensitive coordination complexes is required. Skills in electrochemistry, magnetic susceptibility measurement and Mössbauer / EPR spectroscopies will be appreciated. Please apply on [LHFA emploi](#) (from Jan, 14th 2026) and send a CV mentioning two referees, a covering letter and a summary of previous research work by email (see above).

¹Tanifugi, K. et al.; *Coord. Chem. Rev.* **2023**, 475, 214838.

²Kondo, M. et al.; *Acc. Chem. Res.* **2020**, 53, 2140.

³Seefeldt, L. C. et al.; *Chem. Rev.* **2020**, 120, 5082

⁴Ravel-Massol, R. et al.; *Chem. Eur. J.* **2023**, 29, e202302130.

⁵Munshi, S. et al, *Chem. Commun.* **2025**, 61, 8687.