Pour la première fois ce prix a été attribué conjointement à deux personnes

Anne Varenne, est maître de conférences à l’ENSCP. Après des travaux initiaux sur des dosages immunologiques au moyen d’un marqueur organométallique, avec quantification par infrarouge à transformée de Fourier, elle a rejoint en 1998 l’équipe «Méthodes de séparation électrocinétiques capillaires» du Pr. Pierre Gareil, au Laboratoire d’ Électrochimie et Chimie Analytique de l’ENSCP (UMR CNRS 7575, directeur Daniel Lincot).

Elle y étudie depuis des méthodes de séparations électrocinétiques capillaires visant à identifier, doser, mesurer les constantes et les paramètres physico-chimiques, permettant de mieux comprendre des systèmes chimiques ou biochimiques complexes. Les aspects fondamentaux liés aux recherches concernent le contrôle de la sélectivité des séparations et des phénomènes dispersifs, des écoulements électroosmotiques, ainsi que de certains phénomènes hydrodynamiques et électrocinétiques, la gestion des contraintes liées à la miniaturisation et au couplage en ligne avec les techniques de détection et les approches physico-chimiques visant à améliorer la sensibilité et la sélectivité des modes de détection, l’étude et la caractérisation de systèmes d’interaction, et la valorisation de nouveaux milieux de séparation. Sa compétence fondamentale s’est développée tout particulièrement dans les domaines de la modélisation de la mobilité électrophorétique des petits ions et des polyélectrolytes, du concept de sélectivité en électrophorèse, de l’étude des phénomènes électrocinétiques liés aux caractéristiques physico-chimiques du solvant, de la détermination des constantes d’interactions entre particules complexes, du couplage en ligne avec la spectrométrie de masse, et de l’étude de nouvelles espèces non encore étudiées par électrophorèse capillaire.

Travaux de Richard Ortega
Imagerie quantitative et spéciation des éléments chimiques dans la cellule.
L’imagerie des éléments chimiques dans la cellule permet de mieux comprendre le mécanisme d’action des éléments inorganiques en identifiant les compartiments intracellulaires de leur localisation tels que noyau, cytoplasme, vacuole, mitochondrie, synapse, etc. Elle nécessite la mise en oeuvre de méthodes d’analyse à résolution spatiale (sub)micrométrique et de haute sensibilité. Grâce au développement des méthodes d’imagerie par micro-faisceau d’ions et par micro-faisceau rayonnement synchrotron il est possible de décrire la distribution quantitative des éléments chimiques à l’échelle sub-cellulaire et la nature de certaines espèces chimiques (état d’oxydation par exemple). Ces méthodes sont soit basées sur l’interaction avec la matière des particules chargées accélérées (PIXE : Particle Induced X-ray Emission; RBS, Rutherford Backscattering Spectrometry; et spectrométrie de perte d’énergie), soit du rayonnement synchrotron (SXRF : Synchrotron radiation X-Ray Flurorescence; et XANES : X-ray Absorption Near Edge Structure). L’imagerie cellulaire des éléments chimiques offre des informations très utiles dans des domaines variés, allant de la pharmacologie cellulaire de médicaments anticancéreux, de la toxicologie des radionucléides et métaux lourds, au rôle des métaux dans l’étiologie de maladies neurodégénératives comme la sclérose latérale amyotrophique, ou la maladie de Parkinson.